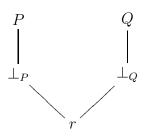
Exercises Proof Theory, 06-04-2011

Exercise Let P and Q be partial orders with least elements \perp_P and \perp_Q respectively. We define the partial order $P \oplus Q$ as the disjoint union of P and Q with a new least element r added:



Suppose $\{D(p) | p \in P\}$, $\{D(q) | q \in Q\}$, $\{f_{pp'} | p \leq p' \text{ in } P\}$, $\{f_{qq'} | q \leq q' \text{ in } Q\}$, $\{[g]_p | g \in \mathcal{L}, p \in P\}$, etcetera, make P and Q into Kripke structures for a language \mathcal{L} .

Define: $D(r) = D(\perp_P) \times D(\perp_Q)$, $f_{r\perp_P}$ and $f_{r\perp_Q}$ are the first and second projections. For an *n*-ary function symbol g let

$$[g]_r((\xi_1,\eta_1),\ldots,(\xi_n,\eta_n)) = ([g]_{\perp_P}(\xi_1,\ldots,\xi_n),[g]_{\perp_Q}(\eta_1,\ldots,\eta_n))$$

and for an *n*-ary relation symbol R define: $((\xi_1, \eta_1), \ldots, (\xi_n, \eta_n)) \in [R]_r$ if and only if both $(\xi_1, \ldots, \xi_n) \in [R]_{\perp_P}$ and $(\eta_1, \ldots, \eta_n) \in [R]_{\perp_Q}$.

a. Show that this definition makes $P \oplus Q$ into a Kripke structure for \mathcal{L} . b. Show that for every atomic formula $\phi(a_1, \ldots, a_n)$ and *n*-tuple $((\xi_1, \eta_1), \ldots, (\xi_n, \eta_n))$ of elements of D(r), we have: $r \Vdash \phi[((\xi_1, \eta_1), \ldots, (\xi_n, \eta_n))]$ if and only if both $\perp_P \Vdash \phi[(\xi_1, \ldots, \xi_n)]$ and $\perp_Q \Vdash \phi[(\eta_1, \ldots, \eta_n)]$.

c. Show that the equivalence of part b extends to all Harrop formulas. d. Use c to give a Kripke-model theoretic proof of the statement that if the sequent $\Gamma \to A \lor B$ is LJ-provable, where Γ consists of Harrop formulas, then at least one of the sequents $\Gamma \to A$, $\Gamma \to B$ is LJ-provable. [Hint: use the completeness theorem for Kripke models]