# Proof Theory 

Jaap van Oosten

Department of Mathematics, Utrecht University
May 25, 2011

Propositional rules of the sequent calculus; weak structural rules and Cut Rule:

Exchange Left $\frac{\Gamma, A, B, \Pi \rightarrow \Delta}{\Gamma, B, A, \Pi \rightarrow \Delta}$
Exchange Right $\frac{\Gamma \rightarrow \Delta, A, B, \Lambda}{\Gamma \rightarrow \Delta, B, A, \Lambda}$
Contraction Left $\frac{A, A, \Gamma \rightarrow \Delta}{A, \Gamma \rightarrow \Delta}$
Contraction Right $\frac{\Gamma \rightarrow \Delta, A, A}{\Gamma \rightarrow \Delta, A}$
Weakening Left $\frac{\Gamma \rightarrow \Delta}{A, \Gamma \rightarrow \Delta}$
Weakening Right $\frac{\Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, A}$
Cut Rule $\frac{\Gamma \rightarrow \Delta, A \quad A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta}$

Propositional rules of the sequent calculus; logical rules:

$$
\begin{gathered}
\neg \text { Left } \frac{\Gamma \rightarrow \Delta, A}{\neg A, \Gamma \rightarrow \Delta} \\
\neg \operatorname{Right} \frac{A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta, \neg A} \\
\wedge \text { Left } \frac{A, B \Gamma \rightarrow \Delta}{A \wedge B, \Gamma \rightarrow \Delta} \\
\wedge \operatorname{Right} \frac{\Gamma \rightarrow \Delta, A \quad \Gamma \rightarrow \Delta, B}{\Gamma \rightarrow \Delta, A \wedge B} \\
\vee \text { Left } \frac{A, \Gamma \rightarrow \Delta \quad B, \Gamma \rightarrow \Delta}{A \vee B, \Gamma \rightarrow \Delta} \\
\vee \operatorname{Right} \frac{\Gamma \rightarrow \Delta, A, B}{\Gamma \rightarrow \Delta, A \vee B} \\
\supset \operatorname{Left} \frac{\Gamma \rightarrow \Delta, A \quad B, \Gamma \rightarrow \Delta}{A \supset B, \Gamma \rightarrow \Delta} \\
\supset \operatorname{Right} \frac{A, \Gamma \rightarrow \Delta, B}{\Gamma \rightarrow \Lambda A \supset B}
\end{gathered}
$$

Syntax of First-Order Logic
A language $\mathcal{L}$ is a collection of function symbols $f, g, \ldots$ and Relation (or Predicate) Symbols $R, P \ldots$. each with specified arity. There are two infinite sets of variables: the set BV of bound variables and the set FV of free variables.
The set of semiterms is defined inductively: every variable (of either kind) is a semiterm; if $t_{1}, \ldots, t_{n}$ are semiterms and $f$ an $n$-ary function symbol, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a semiterm.
The set of semiformulas is defined by: if $t_{1}, \ldots, t_{n}$ are semiterms and $R$ is an $n$-ary predicate symbol, then $R\left(t_{1}, \ldots, t_{n}\right)$ is a semiformula; these semiformulas are called atomic.
If $\phi$ and $\psi$ are semiformulas then so are $(\phi \wedge \psi),(\phi \vee \psi),(\phi \supset \psi)$ and ( $\neg \phi$ ).
If $\phi$ is a semiformula and $x$ is a bound variable then $(\forall x \phi)$ and ( $\exists x \phi$ ) are semiformulas.
We speak of $\mathcal{L}$-semiterms, $\mathcal{L}$-semiformulas.

Semantics of First-Order Logic
An $\mathcal{L}$-structure $\mathcal{M}$ is a nonempty set $M$ together with, for each $n$-ary function symbol $f$ of $\mathcal{L}$, a function $f^{\mathcal{M}}: M^{n} \rightarrow M$ and for each $n$-ary relation (predicate) symbol $R$ a subset $R^{\mathcal{M}}$ of $M^{n}$. Given $\mathcal{M}$, an object assignment is a map $\sigma: \mathrm{BV} \cup \mathrm{FV} \rightarrow M$. If $v$ is a variable (of either type) and $m \in M$, then $\sigma(m / v)$ is the object assignment which assigns $m$ to $v$ and coincides with $\sigma$ on the other variables.
Define for each $\mathcal{L}$-semiterm $t$ its value in $\mathcal{M}$ under $\sigma, t^{\mathcal{M}}[\sigma]$ : if $t$ is a variable, then $t^{\mathcal{M}}[\sigma]=\sigma(t)$. If $t=f\left(t_{1}, \ldots, t_{n}\right)$ then (inductively) $t^{\mathcal{M}}[\sigma]=f^{\mathcal{M}}\left(t_{1}^{\mathcal{M}}[\sigma], \ldots, t_{n}^{\mathcal{M}}[\sigma]\right)$.
Define for each $\mathcal{L}$-semiformula $\phi$ whether or not $\phi$ is true in $\mathcal{M}$ under $\sigma, \mathcal{M} \models \phi[\sigma]$ :
If $\phi$ is atomic, $\phi=R\left(t_{1}, \ldots, t_{n}\right)$ then $\mathcal{M} \models \phi[\sigma]$ precisely if $\left(t_{1}^{\mathcal{M}}[\sigma], \ldots, t_{n}^{\mathcal{M}}[\sigma]\right)$ is an element of $R^{\mathcal{M}}$.
$\mathcal{M} \models(\phi \wedge \psi)[\sigma]$ if both $\mathcal{M} \models \phi[\sigma]$ and $\mathcal{M} \models \psi[\sigma]$;
$\mathcal{M} \models(\phi \vee \psi)[\sigma]$ at least one of $\mathcal{M} \models \phi[\sigma]$ and $\mathcal{M} \models \psi[\sigma]$ holds;
$\mathcal{M} \models(\neg \phi)[\sigma]$ if $\mathcal{M} \not \models \phi[\sigma]$ (i.e., $\mathcal{M} \models \phi[\sigma]$ does not hold;
$\mathcal{M} \models(\phi \supset \psi)[\sigma]$ if $\mathcal{M} \models((\neg \phi) \vee \psi)[\sigma]$.

Semantics of First-Order Logic; continued $\mathcal{M} \models(\exists x \phi)[\sigma]$ if for some $m \in M, \mathcal{M} \models \phi[\sigma(m / x)]$ holds; $\mathcal{M} \models(\forall x \phi)[\sigma]$ if for all $m \in M, \mathcal{M} \models \phi[\sigma(m / x)]$ holds.
Note: whether or not $\mathcal{M} \models \phi[\sigma]$ depends only on the values of $\sigma$ on the variables occurring in $\phi$.
Subsemiformulas: $\psi$ is a subsemiformula of $\phi$ if $\psi$ occurs in the construction tree of $\phi$ (that is: $\phi$ is atomic and $\psi=\phi$, or $\phi=\neg \chi$ and $\psi=\phi$ or $\psi$ is a subsemiformula of $\chi$, etc.)
Quantifiers: these are $\forall x$ and $\exists x$; sometimes we use $Q x$ if we mean either. Say an occurrence of variable $v$ is in the scope of a quantifier $Q x$ if this occurrence is in a subformula of form $Q x(\cdots)$. An $\mathcal{L}$-term is a semiterm in which no bound variables occur. An $\mathcal{L}$-formula is a semiformula such that every occurrence $x$ of a bound variable is in the scope of a quantifier $Q x$.
An $\mathcal{L}$-sentence is an $\mathcal{L}$-formula without free variables.

Semantics of First-Order Logic; continued
For a sentence $\phi$, whether or not $\mathcal{M} \models \phi[\sigma]$ does not depend on $\sigma$; we say $\mathcal{M} \models \phi$ : " $\phi$ is true in $\mathcal{M}$ ", or " $\mathcal{M}$ satisfies $\phi$ ". Let $\Gamma$ be a set of $\mathcal{L}$-sentences, $\phi$ an $\mathcal{L}$-sentence. We say $\Gamma \models \phi$ if every $\mathcal{M}$ which satisfies every element of $\Gamma$ also satisfies $\phi$. Substitution: let $t$ be a semiterm and $v$ an occurrence of a variable in a semiformula $\phi$. Then $t$ is freely substitutable for $v$ in $\phi$, if for every bound variable $x$ in $t, v$ is not in the scope of a quantifier $Q x$. If that is the case, we can form the substitution $\phi(t / v)$ or simply $\phi(t)$. When we write $\phi(t)$ we always have a specific substitution in mind.

Sequent Calculus for First-Order Logic
Axioms: $A \rightarrow A$ for every atomic formula.
The propositional rules as before.
The quantifier rules:

$$
\begin{aligned}
& \forall \text { Left } \frac{A(t), \Gamma \rightarrow \Delta}{\forall x A(x), \Gamma \rightarrow \Delta} \\
& \forall \text { Right } \frac{\Gamma \rightarrow \Delta, A(b)}{\Gamma \rightarrow \forall x A(x)} \\
& \exists \text { Left } \frac{A(b), \Gamma \rightarrow \Delta}{\exists x A(x), \Gamma \rightarrow \Delta} \\
& \exists \text { Right } \frac{\Gamma \rightarrow \Delta, A(t)}{\Gamma \rightarrow \Delta, \exists x A(x)}
\end{aligned}
$$

Here $t$ is an arbitrary term, $b$ in ( $\forall$ Right) and ( $\exists$ Left) is a free variable, the eigenvariable of the inference.

Theorem 2.4.2: Let $P$ be an LK-proof of $\Gamma \rightarrow \Delta$ with every cut of depth $\leq d$. Then there is a cut-free LK-proof $P^{*}$ of $\Gamma \rightarrow \Delta$ with

$$
\left\|P^{*}\right\|<2_{2 d+2}^{\|P\|}
$$

Lemma 2.4.2.1: Let $P$ be an LK-proof of $\Gamma \rightarrow \Delta$ which ends in a cut of depth $d$, having all other cuts of depth $<d$. Then there is an LK-proof $P^{*}$ of $\Gamma \rightarrow \Delta$ with all cuts of depth $<d$, such that

$$
\left\|P^{*}\right\|<\|P\|^{2}
$$

Lemma 2.4.2.2: Let $P$ be an LK-proof of $\Gamma \rightarrow \Delta$ with all cuts of depth $\leq d$. Then there is an LK-proof $P^{*}$ of $\Gamma \rightarrow \Delta$ with all cuts of depth $<d$, such that

$$
\left\|P^{*}\right\|<2^{2\|P\|}
$$

## Exercises March 16, 2011

Exercise 1. Bring the following formulas in prenex normal form, and then in Skolem normal form:

$$
\left.\left.\begin{array}{c}
\exists x(\exists y R(x, y, a) \\
\forall \forall w R(x, w, a)) \\
\forall u(\forall v S(u, v)
\end{array}\right) \exists \exists w S(w, u)\right)
$$

Exercise 2. Bring the following formula in prenex normal form and then in Herbrand normal form:

$$
\forall x \neg \exists y(B(y) \vee \neg C(x))
$$

Sequent Calculus LJ for Intuitionistic Logic. Recall: in every sequent $\Gamma \rightarrow \Delta$, the cedent $\Delta$ consists of at most one formula! Axioms: $A \rightarrow A$ for atomic formulas $A$

$$
\begin{aligned}
& \text { Exch Left } \frac{\Gamma, A, B, \Pi \rightarrow \Delta}{\Gamma, B, A, \Pi \rightarrow \Delta} \\
& \text { Contr Left } \frac{A, A, \Gamma \rightarrow \Delta}{A, \Gamma \rightarrow \Delta} \\
& \text { Weak Left } \frac{\Gamma \rightarrow \Delta}{A, \Gamma \rightarrow \Delta} \\
& \text { Weak Right } \frac{\Gamma \rightarrow \Delta}{\Gamma \rightarrow A} \\
& \text { Cut } \frac{\Gamma \rightarrow A \quad A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta} \\
& \quad \neg \text { Left } \frac{\Gamma \rightarrow A}{\neg A, \Gamma \rightarrow} \\
& \quad \neg \operatorname{Right} \frac{A, \Gamma \rightarrow}{\Gamma \rightarrow \neg A}
\end{aligned}
$$

$$
\begin{gathered}
\wedge \operatorname{Left} \frac{A, B, \Gamma \rightarrow \Delta}{A \wedge B, \Gamma \rightarrow \Delta} \\
\wedge \operatorname{Right} \frac{\Gamma \rightarrow A \quad \Gamma \rightarrow B}{\Gamma \rightarrow A \wedge B} \\
\vee \operatorname{Left} \frac{A, \Gamma \rightarrow \Delta \quad B, \Gamma \rightarrow \Delta}{A \vee B, \Gamma \rightarrow \Delta} \\
\vee \operatorname{Right} 1 \frac{\Gamma \rightarrow A}{\Gamma \rightarrow A \vee B} \\
\vee \operatorname{Right} 2 \frac{\Gamma \rightarrow A}{\Gamma \rightarrow B \vee A} \\
\supset \operatorname{Left} \frac{\Gamma \rightarrow A}{A \supset B, \Gamma \rightarrow \Delta} \\
\supset \operatorname{Right} \frac{A, \Gamma \rightarrow B}{\Gamma \rightarrow A \supset B}
\end{gathered}
$$

$$
\begin{aligned}
& \forall \text { Left } \frac{A(t), \Gamma \rightarrow \Delta}{\forall x A x, \Gamma \rightarrow \Delta} \\
& \forall \text { Right } \frac{\Gamma \rightarrow A(b)}{\Gamma \rightarrow \forall x A x} \\
& \exists \text { Left } \frac{A(b), \Gamma \rightarrow \Delta}{\exists x A x, \Gamma \rightarrow \Delta} \\
& \exists \text { Right } \frac{\Gamma \rightarrow A(t)}{\Gamma \rightarrow \exists x A x}
\end{aligned}
$$

Of course with the usual variable restrictions on ( $\forall$ Right) and $(\exists$ Left).

Theorem. If $\Gamma \rightarrow \Delta$ is provable in LJ from axioms only, then it has a cut-free proof.

Corollary. If $\rightarrow \exists x A x$ is provable in LJ from axioms only, then there is a term $t$ such that $\rightarrow A(t)$ is provable in LJ If $\rightarrow A \vee B$ is provable in LJ from axioms only, then either $\rightarrow A$ or $\rightarrow B$ is provable.

Kripke structures for a language $\mathcal{L}$ :

1. A partially ordered set $P$
2. For each $p \in P$ a nonempty set $D(p)$
3. For each $p \leq q$ in $P$ a function $f_{p q}: D(p) \rightarrow D(q)$
4. For every $n$-ary function symbol $g$ of $\mathcal{L}$ and every $p \in P$ a function $[g]_{p}: D(p)^{n} \rightarrow D(p)$
5. For every $n$-ary relation symbol $R$ of $\mathcal{L}$ and every $p \in P$ a subset $[R]_{p} \subset D(p)^{n}$

Subject to the following conditions:
a. $f_{p p}$ is the identity function and for $p \leq q \leq r$ we have:
$f_{p r}=f_{q r} \circ f_{p q}$
b. $f_{p q}\left([g]_{p}\left(x_{1}, \ldots, x_{n}\right)\right)=[g]_{q}\left(f_{p q}\left(x_{1}, \ldots, f_{p q}\left(x_{n}\right)\right)\right.$
c. $\left(x_{1}, \ldots, x_{n}\right) \in[R]_{p} \Rightarrow\left(f_{p q}\left(x_{1}, \ldots, f_{p q}\left(x_{n}\right)\right) \in[R]_{q}\right.$

We get, for any term $t$ of $\mathcal{L}$ with free variables $a_{1}, \ldots, a_{n}$ and every $p \in P$, a function

$$
[t]_{p}: D(p)^{n} \rightarrow D(p)
$$

which again satisfies:

$$
f_{p q}\left([t]_{p}\left(x_{1}, \ldots, x_{n}\right)\right)=[t]_{q}\left(f_{p q}\left(x_{1}\right), \ldots, f_{p q}\left(x_{n}\right)\right)
$$

for all $x_{1}, \ldots, x_{n} \in D(p)$.

Define a relation $p \Vdash \phi\left[x_{1}, \ldots, x_{n}\right]$ for $p \in P, \phi$ an $\mathcal{L}$-formula with free variables $a_{1}, \ldots, a_{n}$ and $x_{1}, \ldots, x_{n} \in D(p)$ :
$p \Vdash R\left(t_{1}, \ldots, t_{m}\right)[\vec{x}]$ iff $\left(\left[t_{1}\right]_{p}(\vec{x}), \ldots,\left[t_{m}\right]_{p}(\vec{x})\right) \in[R]_{p}$
$p \Vdash t=s[\vec{x}]$ iff $[t]_{p}(\vec{x})=[s]_{p}(\vec{x})$
$p \Vdash(\phi \wedge \psi)[\vec{x}]$ iff $p \Vdash \phi[\vec{x}]$ and $p \Vdash \psi[\vec{x}]$
$p \Vdash(\phi \vee \psi)[\vec{x}]$ iff $p \Vdash \phi[\vec{x}]$ or $p \Vdash \psi[\vec{x}]$
$p \Vdash(\phi \supset \psi)[\vec{x}]$ iff for all $q \geq p$, if $q \Vdash \phi\left[f_{p q}(\vec{x})\right]$ then $q \Vdash \psi\left[f_{p q}(\vec{x})\right]$
$p \Vdash(\neg \phi)[\vec{x}]$ iff for all $q \geq p, q \Vdash \phi\left[f_{p q}(\vec{x})\right]$
$p \Vdash(\exists y \phi)[\vec{x}]$ if for some $x^{\prime} \in D(p), p \Vdash \phi\left[x^{\prime}, \vec{x}\right]$
$p \Vdash(\forall y \phi)[\vec{x}]$ if for all $q \geq p$ and all $x^{\prime} \in D(q), q \Vdash \phi\left[x^{\prime}, f_{p q}(\vec{x})\right]$
Exercise: For all $\phi$ and $\vec{x}$ as above: if $p \Vdash \phi[\vec{x}]$ and $q \geq p$, then $q \Vdash \phi\left[f_{p q}(\vec{x})\right]$

Example. Let:

$$
P=\left.\right|_{0} ^{1}
$$

with $D(0)=\{x\}, D(1)=\{x, \xi\}$ and $f_{01}$ the inclusion.
Let $[A]_{0}=\emptyset,[A]_{1}=\{x\}$
$[B]_{0}=\{(x, x)\},[B]_{1}=\{(x, x)\}$
Then $0 \Vdash \forall y(A(x) \vee B(x, y))$ since for all $\eta \in D(0), \eta=x$ and $0 \Vdash B(x, x)$, and for all $\eta \in D(1), 1 \Vdash A(x) \vee B(x, \eta)$ since $1 \Vdash A(x)$.
However, $0 \Vdash A(x) \vee \forall y B(x, y): 0 \Vdash A(x)$ is clear, and $1 \nVdash B(x, \xi)$ so $0 \| \forall y B(x, y)$.
We see that the implication

$$
\forall y(A(x) \vee B(x, y)) \supset(A(x) \vee \forall y B(x, y))
$$

is not valid in Kripke models.

A Kripke structure for propositional logic is just a partially ordered set $P$.
A truth assignment $\sigma$ assigns to every propositional variable $p$ a subset $\sigma_{p}$ of $P$ which satisfies: if $\xi \in \sigma_{p}$ and $\eta \geq \xi$, then $\eta \in \sigma_{p}$. We then define the relation $\xi \Vdash A[\sigma]$ :
$\xi \Vdash p[\sigma]$ iff $\xi \in \sigma_{p}$
$\xi \Vdash A \wedge B, \xi \Vdash A \vee B$ as before
$\xi \Vdash \neg A$ iff for all $\eta \geq \xi, \eta \Vdash A$
$\xi \Vdash A \supset B$ iff for all $\eta \geq \xi$, if $\eta \Vdash A$ then $\eta \Vdash B$

Example: Let


Let $\sigma_{p}=\{1\}, \sigma_{q}=\{2\}$.
Then $0 \Vdash((p \supset q) \vee(q \supset p))[\sigma]$
Theorem. Both for propositional and first-order logic, the intuitionistic sequent calculus is sound and complete for Kripke models.

Exercises, March 30:

1. Find a cut-free LJ-proof of the intuitionistic sequent $\neg \neg \neg A \rightarrow \neg A$; and also one for $\rightarrow \neg \neg(A \vee \neg A)$
2. Find Kripke countermodels for the following statements:
a. $((p \supset q) \supset p) \supset p$
b. $(\phi \supset \exists x \psi(x)) \supset \exists x(\phi \supset \psi(x))(x$ not in $\phi)$

In general, one can get by, when constructing Kripke models for statements not involving equalitiy axioms, with structures where, for $p \leq q, D(p) \subseteq D(q)$.
For propositional logic, one can take the poset $P$ to be a finite tree.

Some additional exercises:
3. Let $P$ be a partially ordered set with a least element. Show that the following two conditions are equivalent:
a. For any truth assignment, for every $\xi \in P$,
$\xi \Vdash((p \supset q) \vee(q \supset p))$
b. $P$ is a linear order.
4. Let $P$ be a partially ordered set. Prove that the following two statements are equivalent:
a. For every Kripke structure for a language $\mathcal{L}$ on $P$ and for every $\mathcal{L}$-sentence $\phi$ which is LK-valid, we have $p \Vdash \neg \neg \phi$ for every $p \in P$
b. For every $p \in P$ there is an element $q \geq p$ such that $q$ is maximal in $P$.

For a hint: see next page

Hint for Exercise 4 of previous page:
For the direction $b \Rightarrow a$, note that if $p$ is a maximal element in the partially ordered set of a Kripke structure for a language $\mathcal{L}$, then $p \Vdash \phi$ for every classically valid (i.e., LK-valid) $\mathcal{L}$-sentence $\phi$.

For the other direction, let $\mathcal{L}$ be the language $\{<\}$ of orders; let

$$
D(p)=\{q \in P \mid q \leq p\}
$$

(with $f_{p q}$ the inclusion) and <interpreted as the order on $D(p)$ inherited from $P$.

Consider the $\mathcal{L}$-sentence $\phi$ :

$$
\forall x \exists y(x<y) \vee \exists x \forall y \neg(x<y)
$$

and show that $p \Vdash \phi$ precisely when $p$ is a maximal element in $P$.

Some scattered facts about intuitionistic logic:

1. Let $(\cdot)^{-}$be the negative (Gödel-Gentzen) translation. Then it is easy to prove by induction, that for propositional formulas $\phi$, $\mathrm{LJ} \vdash(\phi)^{-} \leftrightarrow \neg \neg \phi$. Combining this with the theory on p. 67, we get Glivenko's Theorem: for any propositional formula $A$, LK $\vdash A$ if and only if LJ $\vdash \neg \neg A$. Warning: this does not hold for all first-order formulas $A$ !

Modulo LK-provable equivalence, there are exactly $2^{2^{n}}$ formulas in the $n$ propositional variables $p_{1}, \ldots, p_{n}$.

Intuitionistically, the situation is more complicated: modulo LJ-provable equivalence, there are infinitely many formulas in one propositional variable $p$. These (equivalence classes of) formulas constitute a lattice: the Rieger-Nishimura lattice or the free Heyting algebra on one generator:


Proof of the second statement of 1.2.7.2: let a relation be $\Delta_{1}$-defined by $I \Delta_{0}$; then it is $\Delta_{0}$-defined by $I \Delta_{0}$ and $I \Delta_{0}$ proves the equivalence between the two definitions.
Since $R$ is $\Delta_{1}$-defined there are formulas $\forall \vec{x} \psi(\vec{x}, \vec{y})$ and $\exists \vec{v} \chi(\vec{v}, \vec{y})$ (with $\psi, \chi \in \Delta_{0}$ ) which both define $R$, and

$$
\begin{aligned}
& \text { (1) } I \Delta_{0} \vdash \forall \vec{y}(\forall \vec{x} \psi(\vec{x}, \vec{y}) \supset \exists \vec{v} \chi(\vec{v}, \vec{y})) \\
& \text { (2) } I \Delta_{0} \vdash \forall \vec{y}(\exists \vec{v} \chi(\vec{v}, \vec{y}) \supset \forall \vec{x} \psi(\vec{x}, \vec{y}))
\end{aligned}
$$

From (1) we get $I \Delta_{0} \vdash \forall \vec{y} \exists \vec{x} \exists \vec{v}(\psi(\vec{x} \cdot \vec{y}) \supset \chi(\vec{v}, \vec{y}))$, hence by Parikh's Theorem we get a term $t(\vec{y})$ such that

$$
\text { (3) } I \Delta_{0} \vdash \forall \vec{y} \exists \vec{x} \leq t(\vec{y}) \exists \vec{v} \leq t(\vec{y})(\psi(\vec{x}, \vec{y}) \supset \chi(\vec{v}, \vec{y}))
$$

We conclude:

$$
I \Delta_{0} \vdash \forall \vec{y}(\forall \vec{x} \leq t(\vec{y}) \psi(\vec{x}, \vec{y}) \supset \exists \vec{v} \leq t(\vec{y}) \chi(\vec{v}, \vec{y}))
$$

Then $\forall \vec{x} \leq t(\vec{y}) \psi(\vec{x}, \vec{y})$ is a $\Delta_{0}$-formula defining $R$.

Another important remark: let $T$ be any arithmetical theory and $f$ a function. Then if $f$ is $\Sigma_{1}$-defined by $T$, it is in fact $\Delta_{1}$-defined:

For, suppose the $\Sigma_{1}$-formula $\exists \vec{z} A_{f}(\vec{x}, \vec{z}, y)$ defines the relation $f(\vec{x})=y$, with $A_{f} \in \Delta_{0}$.
Then since $T \vdash \forall \vec{x} \exists!y \exists \vec{z} A_{f}(\vec{x}, \vec{z}, y)$ we have:

$$
T \vdash \forall \vec{x}, y\left(\exists \vec{z} A_{f}(\vec{x}, \vec{z}, y) \leftrightarrow \forall \vec{z} \forall w\left(A_{f}(\vec{x}, \vec{z}, w) \supset w=y\right)\right)
$$

so the $\Pi_{1}$-formula $\forall \vec{z} \forall w\left(A_{f}(\vec{x}, \vec{z}, w) \supset w=y\right)$ also defines $f$.

## Exercises.

1. Express by a $\Delta_{0}$-formula $\phi$ that "there exist unique $a$ and $b$ such that $y=a x+b$ and $b<x$ ", and prove that

$$
I \Delta_{0} \vdash \forall x>0 \forall y \phi
$$

2.a) Give a formula $\phi$ such that $\exists!x \exists!y \phi$ is true but $\exists!y \exists!x \phi$ is false.
b) Define a quantifier $\exists!(a, b)$ for " there is a unique pair $(a, b)$ ", and show that $\exists!(a, b)$ is not equivalent to $\exists!a \exists!b$.

## Exercises for section 1.2.

1. Prove that in $I \Delta_{0}$ the following sentence is provable:

$$
\begin{gathered}
\forall x a \exists z[\forall k(1 \leq k \leq \operatorname{Len}(x) \supset \beta(k, x)=\beta(k, z)) \\
\wedge \beta(\operatorname{Len}(x)+1, z)=a]
\end{gathered}
$$

2. Prove: $B \Sigma_{n+1} \Rightarrow I \Sigma_{n}$ and $I \Pi_{n} \Leftrightarrow L \Sigma_{n}$.
3. The Ackermann function is defined by:

$$
\begin{aligned}
A(0, n) & =n+1 \\
A(m+1,0) & =A(m, 1) \\
A(m+1, n+1) & =A(m, A(m+1, n))
\end{aligned}
$$

Prove that the graph of the Ackermann function is $\Delta_{1}$-definable by $/ \Sigma_{1}$.
4. Prove that $2^{x-1}>x^{2}$ for all $x \geq 7$. Conclude from this that $|x|^{2}<x$ whenever $x>36$.

Exercises about Gödel's Incompleteness Theorems. We work with PA. In the exercises below you may assume that $\mathbb{N}$ is a model of PA. When we say 'true', we mean: true in $\mathbb{N}$.
Let $G$ be the Gödel sentence: so PA $\vdash G \leftrightarrow \neg \exists x \operatorname{Prf}(x, \overline{\ulcorner G\urcorner})$, where $\operatorname{Prf}(x, y)$ is a $\Delta_{1}$-formula representing the relation: " $y$ is the Gödel number of a formula and $x$ is a Gödel number of a proof in PA of that formula".

1. Prove that $G$ is true.
2. Prove that $\mathrm{PA} \nvdash G$.
3. Prove that $\mathrm{PA} \nvdash \neg G$.

## Elements of Partial Recursive Function Theory

Definition. A partial function $\mathbb{N}^{k} \rightharpoonup \mathbb{N}$ is a function $U \xrightarrow{f} \mathbb{N}$ where $U \subseteq \mathbb{N}^{k}$. We write $\operatorname{dom}(f)$ for $U$. We also write $f(\vec{x}) \downarrow($ " $f(\vec{x})$ is defined") for: $\vec{x} \in \operatorname{dom}(f)$.
Definition. A partial function $f: \mathbb{N}^{k} \rightharpoonup \mathbb{N}$ is defined by minimization from a partial function $g: \mathbb{N}^{k+1} \rightharpoonup \mathbb{N}$ if

$$
\begin{aligned}
\operatorname{dom}(f)= & \{\vec{x} \mid \exists y[g(\vec{x}, y)=0 \text { and } \\
& \forall i \leq y(\vec{x}, i) \in \operatorname{dom}(g)]\}
\end{aligned}
$$

and for all $\vec{x} \in \operatorname{dom}(f), f(\vec{x})$ is the least such $y$.
We write: $f(\vec{x}) \simeq \mu y . g(\vec{x}, y)=0$.
Between expressions involving partial functions, the symbol " $\simeq$ " means: the LHS is defined precisely when the RHS is, and they denote the same value if defined.

Definition. The class of partial recursive functions is the least class of partial functions which contains all primitive recursive functions and is closed under composition and minimization.

If $f_{1}, \ldots, f_{k}$ are $n$-ary partial recursive functions and $g$ is $k$-ary partial recursive, then the composition of $g$ and $f_{1}, \ldots, f_{k}$ is the $n$-ary partial function $h$, defined by

$$
h(\vec{x}) \simeq g\left(f_{1}(\vec{x}), \ldots, f_{k}(\vec{x})\right)
$$

Here $\vec{x} \in \operatorname{dom}(h)$ if and only if $\vec{x} \in \bigcap_{i=1}^{k} \operatorname{dom}\left(f_{i}\right)$ and $\left(f_{1}(\vec{x}), \ldots, f_{k}(\vec{x})\right) \in \operatorname{dom}(g)$.

Theorem [Normal Form Theorem; Kleene] There are primitive recursive functions $T^{k}$, for each $k>0$, and $U$, satisfying the following:
For every partial recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ there is a number $e$ such that for all $\vec{x} \in \mathbb{N}^{k}$ :

- $\vec{x} \in \operatorname{dom}(f) \Leftrightarrow \exists y T^{k}(e, \vec{x}, y)=0$
- $f(\vec{x}) \simeq U\left(\mu y . T^{k}(e, \vec{x}, y)=0\right)$

In view of the Normal Form Theorem, we write $\varphi_{e}^{(k)}$ for $f$, and we call $e$ an index for the partial recursive function $f$.

Theorem The system of indices for partial recursive functions has the following properties:
a) For every $k$-ary partial recursive $f$ there are infinitely many indices e such that $f=\varphi_{e}^{(k)}$
b) $\left(S_{n}^{m}\right.$-Theorem) There are primitive recursive functions $S_{n}^{m}$ for each $n>0, m>0$, such that for each $e, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}$ :

$$
\varphi_{S_{n}^{m}\left(e, x_{1}, \ldots, x_{m}\right)}\left(y_{1}, \ldots, y_{n}\right) \simeq \varphi_{e}^{(m+n)}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)
$$

c) For each $k>0$ the partial function

$$
e, x_{1}, \ldots, x_{k} \mapsto \varphi_{e}^{(k)}\left(x_{1}, \ldots, x_{k}\right)
$$

is partial recursive.

Theorem [Recursion Theorem; Kleene] Let $F: \mathbb{N}^{k+1} \rightharpoonup \mathbb{N}$ be a partial recursive function. Then there is an index $e$ such that for all $\vec{x} \in \mathbb{N}^{k}$ :

$$
\varphi_{e}^{(k)}(\vec{x}) \simeq F(\vec{x}, e)
$$

Corollary. The partial recursive functions are closed under primitive recursion: if $g: \mathbb{N}^{k} \rightharpoonup \mathbb{N}$ and $h: \mathbb{N}^{k+2} \rightharpoonup \mathbb{N}$ are partial recursive and $f: \mathbb{N}^{k+1} \rightharpoonup \mathbb{N}$ is defined by

$$
\begin{aligned}
f(\vec{x}, 0) & \simeq g(\vec{x}) \\
f(\vec{x}, y+1) & \simeq h(\vec{x}, f(\vec{x}, y), y)
\end{aligned}
$$

then $f$ is partial recursive. Here $(\vec{x}, y) \in \operatorname{dom}(f)$ if and only if $\vec{x} \in \operatorname{dom}(g)$ and for all $i<y$,

$$
(\vec{x}, f(\vec{x}, i), i) \in \operatorname{dom}(h)
$$

Proof. Let $\operatorname{sg}(y)$ be the primitive recursive function such that $\operatorname{sg}(0)=0$ and $\operatorname{sg}(y+1)=1$; and let $\operatorname{sg}(y)=1 \dot{-} \operatorname{sg}(y)$.
Let $\gamma$ be an index for $g$ and $\iota$ an index for $h$. Consider the partial function $F(\vec{x}, y, e)$, given by

$$
\overline{\operatorname{sg}}(y) \cdot \varphi_{\gamma}^{(k)}(\vec{x})+\operatorname{sg}(y) \cdot \varphi_{\iota}^{(k+2)}\left(\vec{x}, \varphi_{e}^{(k+1)}(\vec{x}, y \dot{-} 1), y \dot{-} 1\right)
$$

Then $F$ is partial recursive. By the recursion theorem, there is an index $e$ such that for all $\vec{x}, y$,

$$
\varphi_{e}^{(k+1)}(\vec{x}, y) \simeq F(\vec{x}, y, e)
$$

It follows, that $\varphi_{e}^{(k+1)}(\vec{x}, y) \simeq f(\vec{x}, y)$.

Corollary [The "Halting Problem"; Turing] There is no partial recursive function $f$ such that for all $e$ and $x_{1}, \ldots, x_{k}$ we have: $f(e, \vec{x})=0$ if $\vec{x} \in \operatorname{dom}\left(\varphi_{e}^{(k)}\right)$, and $f(e, \vec{x})=1$ otherwise.
Proof. Suppose such $f$ exists. Let $g$ be a partial recursive function such that $\operatorname{dom}(g)=\mathbb{N}-\{0\}$ (for example, $g(x) \simeq \mu y \cdot x \cdot y>1$ ). By the recursion theorem, let $e$ be an index such that for all $\vec{x}$,

$$
\varphi_{e}^{(k)}(\vec{x}) \simeq g(f(e, \vec{x}))
$$

Then $\vec{x} \in \operatorname{dom}\left(\varphi_{e}^{(k)}\right) \Leftrightarrow f(e, \vec{x}) \neq 0 \Leftrightarrow \vec{x} \notin \operatorname{dom}\left(\varphi_{e}^{(k)}\right) ; a$ contradiction.

## Heyting Arithmetic

Heyting Arithmetic (HA) is the intuitionistic version of Peano Arithmetic. The language and axioms are the same:

1) $S(x) \neq 0$
2) $S(x)=S(y) \supset x=y$
3) $x+0=x$
4) $x+S(y)=S(x+y)$
5) $x \cdot 0=0$
6) $x \cdot S(y)=x \cdot y+x$
7) $\phi(0) \wedge \forall x(\phi(x) \supset \phi(S(x))) \supset \forall x \phi(x)$ for all $\phi$

But the logic is given by the calculus LJ.

Although the logic of HA is intuitionistic, one can still prove instances of the 'Law of Excluded Middle':
HA $\vdash \forall x y(x=y \vee \neg(x=y))$
HA $\vdash \forall x y(x<y \vee x=y \vee x>y)$
where the order $<$ is defined as: $x<y \equiv \exists z(x+S(z)=y)$
These things are proved by induction.
In general, HA $\vdash \phi \vee \neg \phi$ when $\phi$ is a $\Delta_{0}$-formula.
We wish to define a nontrivial interpretation of HA into classical, ordinary mathematics. We cannot use an ordinary model, because then $\phi \vee \neg \phi$ would be true for all formulas.

Realizability (Kleene; 1945) In the following, we assume that $x, y \mapsto\langle x, y\rangle$ is a primitive recursive bijection $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, with primitive recursive inverse $x \mapsto\left((x)_{0},(x)_{1}\right)$. So every number $x$ is regarded as code of an ordered pair.
Consider a formula $\phi\left(u_{1}, \ldots, u_{n}\right)$ with free variables $u_{1}, \ldots, u_{n}$. For a number $e$ and an $n$-tuple of numbers $k_{1}, \ldots, k_{n}$, we define what it means that

$$
e \text { realizes } \phi\left[k_{1}, \ldots, k_{n}\right]
$$

by induction on the formula $\phi$
$e$ realizes $\phi\left[k_{1}, \ldots, k_{n}\right]$ if and only if $\mathbb{N} \models \phi\left[k_{1}, \ldots, k_{n}\right]$, if $\phi$ is an atomic formula
$e$ realizes $(\phi \wedge \psi)\left[k_{1}, \ldots, k_{n}\right]$ if and only if $(e)_{0}$ realizes $\phi\left[k_{1}, \ldots, k_{n}\right]$ and $(e)_{1}$ realizes $\psi\left[k_{1}, \ldots, k_{n}\right]$ $e$ realizes $(\phi \vee \psi)\left[k_{1}, \ldots, k_{n}\right]$ if and only if either $(e)_{0}=0$ and $(e)_{1}$ realizes $\phi\left[k_{1}, \ldots, k_{n}\right]$, or $(e)_{0} \neq 0$ and $(e)_{1}$ realizes $\psi\left[k_{1}, \ldots, k_{n}\right]$ $e$ realizes $(\phi \supset \psi)\left[k_{1}, \ldots, k_{n}\right]$ if and only if for each number a such that a realizes $\phi\left[k_{1}, \ldots, k_{n}\right]$, we have $\varphi_{e}(a) \downarrow$ and $\varphi_{e}(a)$ realizes $\psi\left[k_{1}, \ldots, k_{n}\right]$
$e$ realizes $(\neg \phi)\left[k_{1}, \ldots, k_{n}\right]$ if and only if no number realizes $\phi\left[k_{1}, \ldots, k_{n}\right]$
$e$ realizes $(\exists x \phi)\left[k_{1}, \ldots, k_{n}\right]$ if and only if $(e)_{1}$ realizes $\phi\left[(e)_{0}, k_{1}, \ldots, k_{n}\right]$
$e$ realizes $(\forall x \phi)\left[k_{1}, \ldots, k_{n}\right]$ if and only if for each number $m$, $\varphi_{e}(m) \downarrow$ and $\varphi_{e}(m)$ realizes $\phi\left[m, k_{1}, \ldots, k_{n}\right]$

## Main Theorem (Kleene)

1. For every sentence $\phi$ such that HA $\vdash \phi$, there is a number $e$ such that e realizes $\phi$.
2. There is a $\Pi_{1}$-formula $\forall n \psi(m, n)$ such that the sentence

$$
\forall m[\forall n \psi(m, n) \vee \neg \forall n \psi(m, n)]
$$

is not realized by any number.
Hence, realizability is a nontrivial interpretation of HA.

We shall start by looking at point 2 .
Definition. An almost negative formula is a formula which contains $\vee$ and $\exists$ only between (viz. before) $\Delta_{0}$-formulas. Note, that every $\Delta_{0}$-formula is almost negative.

Theorem on Almost Negative Formulas. Let $\phi$ be an almost negative formula with free variables $u_{1}, \ldots, u_{n}$.

1. There is a partial recursive function $t_{\phi}$ of $n$ variables such that for all $n$-tuples $k_{1}, \ldots, k_{n}$ we have: if $\mathbb{N} \models \phi\left[k_{1}, \ldots, k_{n}\right]$ then $t_{\phi}\left(k_{1}, \ldots, k_{n}\right)$ is defined and realizes $\phi\left[k_{1}, \ldots, k_{n}\right]$
2. If a number $e$ realizes $\phi\left[k_{1}, \ldots, k_{n}\right]$ then $\mathbb{N} \models \phi\left[k_{1}, \ldots, k_{n}\right]$

This theorem is proved by induction on the structure of $\phi$. First a Lemma:
$\Delta_{0}$-Lemma For every $\Delta_{0}$-formula $\phi\left(u_{1}, \ldots, u_{n}\right)$ there is a primitive recursive function $s_{\phi}$ such that for all $n$-tuples $k_{1}, \ldots, k_{n}$ the following hold:

1. If $\mathbb{N} \models \phi[\vec{k}]$ then $\left(s_{\phi}(\vec{k})\right)_{0}=0$ and $\left(s_{\phi}(\vec{k})\right)_{1}$ realizes $\phi[\vec{k}]$
2. If $\mathbb{N} \notin \phi[\vec{k}]$ then $\left(s_{\phi}(\vec{k})\right)_{0} \neq 0$

Proof: Exercise!

Proof of the Theorem on Almost Negative Formulas: we define the partial recursive functions $t_{\phi}$ by recursion on the structure of $\phi$, and we prove at the same time properties 1 and 2 by simultaneous induction on $\phi$.
For atomic $\phi$, let $t_{\phi}(\vec{k})=0$. The proof of 1 and 2 is by definition.
For $\exists x \phi$ with $\phi \in \Delta_{0}$ we put $t_{\exists x \phi}(\vec{k}) \simeq\langle a, b\rangle$, where

$$
\begin{aligned}
a & =\mu y \cdot\left(s_{\phi}(y, \vec{k})\right)_{0}=0 \\
b & =\left(s_{\phi}(a, \vec{k})\right)_{1}
\end{aligned}
$$

Here $s_{\phi}$ is the primitive recursive function from the $\Delta_{0}$-Lemma.
For $\phi \wedge \psi$ we put

$$
t_{\phi \wedge \psi}(\vec{k}) \simeq\left\langle t_{\phi}(\vec{k}), t_{\psi}(\vec{k})\right\rangle
$$

For $\phi \supset \psi$ : Let $e$ be an index such that for all $\vec{k}, m$, $\varphi_{e}^{(n+1)}(\vec{k}, m) \simeq t_{\psi}(\vec{k})$. Then put

$$
t_{\phi \supset \psi}(\vec{k})=S_{1}^{n}(e, \vec{k})
$$

where $S_{1}^{m}$ is from the $S_{n}^{m}$-Theorem.
Proof of 1 and 2 in this case: First, suppose $\mathbb{N} \models(\phi \supset \psi)[\vec{k}]$. We always have $t_{\phi \supset \psi}(\vec{k}) \downarrow$ since $S_{1}^{n}$ is primitive recursive. Suppose $m$ realizes $\phi[\vec{k}]$. Then $\mathbb{N} \models \phi[\vec{k}]$ by induction hypothesis, so $\mathbb{N} \models \psi[\vec{k}]$ by assumption. Hence by induction hypothesis $t_{\psi}(\vec{k})$ is defined and realizes $\psi[\vec{k}]$, but $t_{\psi}(\vec{k})$ is just the partial recursive function with index $t_{\phi \supset \psi}(\vec{k})$, applied to $m$. We conclude that $t_{\phi \supset \psi}(\vec{k})$ realizes $(\phi \supset \psi)[\vec{k}]$, as desired.
Conversely, suppose $m$ realizes $(\phi \supset \psi)[\vec{k}]$. Suppose $\mathbb{N} \models \phi[\vec{k}]$. Then $t_{\phi}(\vec{k})$ is defined and realizes $\phi[\vec{k}]$, hence $\varphi_{m}^{(n)}\left(t_{\phi}(\vec{k})\right)$ is defined and realizes $\psi[\vec{k}]$. By induction hypothesis, $\mathbb{N} \models \psi[\vec{k}]$. We conclude that $\mathbb{N} \models(\phi \supset \psi)[\vec{k}]$.

For $\forall x \phi$, let $e$ be an index such that for all $m, \vec{k}$,
$\varphi_{e}^{(n+1)}(\vec{k}, m) \simeq t_{\phi}(m, \vec{k})$. Put

$$
t_{\forall \times \phi}(\vec{k}) \simeq S_{1}^{n}(e, \vec{k})
$$

Convince yourself that this works (Exercise!). This finishes the proof of the Theorem on Almost Negative Formulas.

To finish the proof of Part 2 of the Main Theorem: let $\psi(e, m, y)$ be a $\Delta_{1}$-formula which represents the relation: $T^{1}(e, m, y) \neq 0$. So $\forall y \psi(e, m, y)$ is an almost negative formula which represents the relation: $\varphi_{e}^{(1)}(m)$ is undefined.
Suppose $k$ realizes the sentence

$$
\forall e m[\forall y \psi(e, m, y) \vee \neg \forall y \psi(e, m, y)]
$$

Then for all $e, m, \phi_{k}^{(2)}(e, m)$ is defined and:

$$
\begin{aligned}
& \left(\varphi_{k}^{(2)}(e, m)\right)_{0}=0 \Rightarrow\left(\varphi_{k}^{(2)}(e, m)\right)_{1} \text { realizes } \forall y \psi(e, m, y) \\
& \left(\varphi_{k}^{(2)}(e, m)\right)_{0} \neq 0 \Rightarrow\left(\varphi_{k}^{(2)}(e, m)\right)_{1} \text { realizes } \neg \forall y \psi(e, m, y)
\end{aligned}
$$

Then by the Theorem on Almost Negative Formulas we have: $\varphi_{e}^{(1)}(m)$ is defined, precisely if $\left(\varphi_{k}^{(2)}(e, m)\right)_{0} \neq 0$. But this contradicts the unsolvability of the Halting Problem. This proves part 2 of the Main Theorem.

Proof sketch of Part 1 of the Main Theorem: if $\mathrm{HA} \vdash \phi$ then there is a number $e$ such that $e$ realizes $\phi$.
This is done by induction on HA-proofs. One needs to check the axioms and rules of intuitionistic predicate logic, and the arithmetical axioms.
Starting with the induction axiom:

$$
\forall \vec{y}[\phi(0, \vec{y}) \wedge \forall x(\phi(x, \vec{y}) \supset \phi(S x, \vec{y})) \supset \forall x \phi(x, \vec{y})]
$$

Since the partial recursive functions are closed under primitive recursion we can find an index $e$ such that for all $\vec{k}, d, m$

$$
\begin{aligned}
\varphi_{e}^{(n+2)}(\vec{k}, d, 0) & =(d)_{0} \\
\varphi_{e}^{(n+2)}(\vec{k}, d, m+1) & \simeq \Psi\left((d)_{1}, m, \varphi_{e}^{(n+2)}(\vec{k}, d, m)\right)
\end{aligned}
$$

where $\Psi(a, b, c) \simeq \varphi_{\varphi_{\mathrm{a}}^{(1)}(b)}^{(1)}(c)$.
Let $f$ be such that $\varphi_{f}^{(n+2)}(e, \vec{k}, d)=S_{1}^{n+1}(e, \vec{k}, d)$.
Now suppose $d$ realizes $\phi(0, \vec{k}) \wedge \forall m(\phi(m, \vec{k}) \supset \phi(S(m), \vec{k}))$, so $(d)_{0}$ realizes $\phi(0, \vec{k})$ and $(d)_{1}$ realizes $\forall m(\phi(m, \vec{k}) \supset \phi(S(m), \vec{k}))$. One now proves that $\varphi_{f}^{(n+2)}(e, \vec{k}, d)$ realizes $\forall m \phi(m, \vec{k})$.

Hence, $S_{1}^{n+1}(f, e, \vec{k})$ realizes

$$
[\phi(0, \vec{k}) \wedge \forall m(\phi(m, \vec{k}) \supset \phi(S(m), \vec{k})) \supset \forall m \phi(m, \vec{k})]
$$

So if $\varphi_{e^{\prime}}^{(n)}(\vec{k})=S_{1}^{n+1}(f, e, \vec{k})$ then $e^{\prime}$ realizes

$$
\forall \vec{k}[\cdots]
$$

The rest of the proof consists in verifying realizability for the other axioms of HA (this is easy) and the axioms and rules of intuitionistic predicate logic.
For this, a "Hilbert-type" proof system (instead of a sequent calculus) is most convenient. We omit this, but leave as Exercise Verify realizability for the rule

$$
\frac{B \supset A(x)}{B \supset \forall x A(x)}
$$

with $x$ not free in $B$. That is: suppose $B, A(x)$ are $\mathcal{L}_{\mathrm{HA}}$-formulas. Show that there is a partial recursive function $F$, such that for every a with the property that for every $k, \varphi_{a}(k)$ is defined and realizes $B \supset A(x)[k], F(a)$ is defined and realizes $B \supset \forall x A(x)$.

A variation of realizability: $\vdash$-realizability
$e \vdash$-realizes $\phi[\vec{k}]$ iff $\mathbb{N} \models \phi[\vec{k}]$, for $\phi$ atomic
$e \vdash$-realizes $(\phi \wedge \psi)[\vec{k}]$ iff $(e)_{0} \vdash$-realizes $\phi[\vec{k}]$ and $(e)_{1} \vdash$-realizes
$\psi[\vec{k}]$
$e \vdash$-realizes $\phi \vee \psi[\vec{k}]$ iff either $(e)_{0}=0$ and $(e)_{1} \vdash$-realizes $\phi[\vec{k}]$, or $(e)_{0} \neq 0$ and $(e)_{1} \vdash$-realizes $\psi[\vec{k}]$
$e \vdash$-realizes $\phi \supset \psi[\vec{k}]$ if $\mathrm{HA} \vdash \phi(\vec{k}) \supset \psi(\vec{k})$ and for every a such that $a \vdash$-realizes $\phi[\vec{k}], \varphi_{e}(a)$ is defined and realizes $\psi[\vec{k}]$
$e \vdash$-realizes $(\exists x \phi)[\vec{k}]$ iff $(e)_{1} \vdash$-realizes $\phi\left[(e)_{0}, \vec{k}\right]$
$e \vdash$-realizes $(\forall x \phi)[\vec{k}]$ iff $\mathrm{HA} \vdash \forall x \phi(x, \vec{k})$ and for every $m, \varphi_{e}(m)$ is defined and $\vdash$-realizes $\phi[m, \vec{k}]$

Again we have:

$$
\text { If HA } \vdash \text { then for some } e, e \vdash-\text { realizes } \phi
$$

But also:

$$
\text { If } e \vdash-\text { realizes } \phi[\vec{k}] \text { then HA } \vdash \phi(\vec{k})
$$

We obtain the following derived rules for $H A$ :

1. If $\mathrm{HA} \vdash A \vee B$ then $\mathrm{HA} \vdash A$ or $\mathrm{HA} \vdash B$
(Disjunction Property for HA)
2. If $\mathrm{HA} \vdash \exists x A(x)$ then for some number $m$, $\mathrm{HA} \vdash A(m)$
(Existence Property of HA)
3. If $\mathrm{HA} \vdash \forall x \exists y A(x, y)$ then for some number $e$,

$$
\operatorname{HA} \vdash \forall x \exists y\left(T^{1}(e, x, y)=0 \wedge A(x, U(y))\right)
$$

(assuming function symbols for $T$ and $U$ conservatively added to HA, with axioms about their behaviour)
which states: "every total relation contains the graph of a total recursive function". This is called Church's Rule for HA.
Exercise Show that there is no Church's Rule for PA.

