
Proof Theory

Jaap van Oosten

Department of Mathematics, Utrecht University

May 25, 2011

Propositional rules of the sequent calculus; weak structural rules
and Cut Rule:

Γ,A,B ,Π → ∆
Exchange Left

Γ,B ,A,Π → ∆

Γ → ∆,A,B ,Λ
Exchange Right

Γ → ∆,B ,A,Λ

A,A,Γ → ∆
Contraction Left

A,Γ → ∆

Γ → ∆,A,A
Contraction Right

Γ → ∆,A

Γ → ∆Weakening Left
A,Γ → ∆

Γ → ∆Weakening Right
Γ → ∆,A

Γ → ∆,A A,Γ → ∆
Cut Rule

Γ → ∆

Propositional rules of the sequent calculus; logical rules:

Γ → ∆,A
¬ Left

¬A,Γ → ∆

A,Γ → ∆
¬ Right

Γ → ∆,¬A

A,BΓ → ∆
∧ Left

A ∧ B ,Γ → ∆

Γ → ∆,A Γ → ∆,B
∧ Right

Γ → ∆,A ∧ B

A,Γ → ∆ B ,Γ → ∆
∨ Left

A ∨ B ,Γ → ∆

Γ → ∆,A,B
∨ Right

Γ → ∆,A ∨ B

Γ → ∆,A B ,Γ → ∆
⊃ Left

A ⊃ B ,Γ → ∆

A,Γ → ∆,B
⊃ Right

Γ → ∆,A ⊃ B

Syntax of First-Order Logic
A language L is a collection of function symbols f , g , . . . and
Relation (or Predicate) Symbols R ,P, each with specified arity.
There are two infinite sets of variables: the set BV of bound
variables and the set FV of free variables.
The set of semiterms is defined inductively: every variable (of
either kind) is a semiterm; if t1, . . . , tn are semiterms and f an
n-ary function symbol, then f (t1, . . . , tn) is a semiterm.
The set of semiformulas is defined by: if t1, . . . , tn are semiterms
and R is an n-ary predicate symbol, then R(t1, . . . , tn) is a
semiformula; these semiformulas are called atomic.
If φ and ψ are semiformulas then so are (φ ∧ ψ), (φ ∨ ψ), (φ ⊃ ψ)
and (¬φ).
If φ is a semiformula and x is a bound variable then (∀xφ) and
(∃xφ) are semiformulas.
We speak of L-semiterms, L-semiformulas.

Semantics of First-Order Logic
An L-structure M is a nonempty set M together with, for each
n-ary function symbol f of L, a function f M : Mn → M and for
each n-ary relation (predicate) symbol R a subset RM of Mn.
Given M, an object assignment is a map σ : BV ∪ FV → M. If v
is a variable (of either type) and m ∈ M, then σ(m/v) is the
object assignment which assigns m to v and coincides with σ on
the other variables.
Define for each L-semiterm t its value in M under σ, tM[σ]:
if t is a variable, then tM[σ] = σ(t). If t = f (t1, . . . , tn) then
(inductively) tM[σ] = f M(tM1 [σ], . . . , tMn [σ]).
Define for each L-semiformula φ whether or not φ is true in M
under σ, M |= φ[σ]:
If φ is atomic, φ = R(t1, . . . , tn) then M |= φ[σ] precisely if
(tM1 [σ], . . . , tMn [σ]) is an element of RM.
M |= (φ ∧ ψ)[σ] if both M |= φ[σ] and M |= ψ[σ];
M |= (φ ∨ ψ)[σ] at least one of M |= φ[σ] and M |= ψ[σ] holds;
M |= (¬φ)[σ] if M 6|= φ[σ] (i.e., M |= φ[σ] does not hold;
M |= (φ ⊃ ψ)[σ] if M |= ((¬φ) ∨ ψ)[σ].

Semantics of First-Order Logic; continued
M |= (∃xφ)[σ] if for some m ∈ M, M |= φ[σ(m/x)] holds;
M |= (∀xφ)[σ] if for all m ∈ M, M |= φ[σ(m/x)] holds.
Note: whether or not M |= φ[σ] depends only on the values of σ
on the variables occurring in φ.
Subsemiformulas: ψ is a subsemiformula of φ if ψ occurs in the
construction tree of φ (that is: φ is atomic and ψ = φ, or φ = ¬χ
and ψ = φ or ψ is a subsemiformula of χ, etc.)
Quantifiers: these are ∀x and ∃x ; sometimes we use Qx if we
mean either. Say an occurrence of variable v is in the scope of a
quantifier Qx if this occurrence is in a subformula of form Qx(· · ·).
An L-term is a semiterm in which no bound variables occur.
An L-formula is a semiformula such that every occurrence x of a
bound variable is in the scope of a quantifier Qx .
An L-sentence is an L-formula without free variables.

Semantics of First-Order Logic; continued
For a sentence φ, whether or not M |= φ[σ] does not depend on
σ; we say M |= φ: “φ is true in M”, or “M satisfies φ”.
Let Γ be a set of L-sentences, φ an L-sentence. We say Γ |= φ if
every M which satisfies every element of Γ also satisfies φ.
Substitution: let t be a semiterm and v an occurrence of a variable
in a semiformula φ. Then t is freely substitutable for v in φ, if for
every bound variable x in t, v is not in the scope of a quantifier
Qx . If that is the case, we can form the substitution φ(t/v) or
simply φ(t). When we write φ(t) we always have a specific
substitution in mind.

Sequent Calculus for First-Order Logic
Axioms: A → A for every atomic formula.
The propositional rules as before.
The quantifier rules:

A(t),Γ → ∆
∀ Left

∀xA(x),Γ → ∆

Γ → ∆,A(b)
∀ Right

Γ → ∀xA(x)

A(b),Γ → ∆
∃ Left

∃xA(x),Γ → ∆

Γ → ∆,A(t)
∃ Right

Γ → ∆,∃xA(x)

Here t is an arbitrary term, b in (∀ Right) and (∃ Left) is a free
variable, the eigenvariable of the inference.

Theorem 2.4.2: Let P be an LK-proof of Γ → ∆ with every cut of
depth ≤ d . Then there is a cut-free LK-proof P∗ of Γ → ∆ with

||P∗|| < 2
||P||
2d+2

Lemma 2.4.2.1: Let P be an LK-proof of Γ → ∆ which ends in a
cut of depth d , having all other cuts of depth < d . Then there is
an LK-proof P∗ of Γ → ∆ with all cuts of depth < d , such that

||P∗|| < ||P ||2

Lemma 2.4.2.2: Let P be an LK-proof of Γ → ∆ with all cuts of
depth ≤ d . Then there is an LK-proof P∗ of Γ → ∆ with all cuts
of depth < d , such that

||P∗|| < 22||P||

Exercises March 16, 2011

Exercise 1. Bring the following formulas in prenex normal form,
and then in Skolem normal form:

∃x (∃yR(x , y , a) ⊃ ∀wR(x ,w , a))
∀u (∀vS(u, v) ⊃ ∃wS(w , u))

Exercise 2. Bring the following formula in prenex normal form and
then in Herbrand normal form:

∀x¬∃y (B(y) ∨ ¬C (x))

Sequent Calculus LJ for Intuitionistic Logic. Recall: in every
sequent Γ → ∆, the cedent ∆ consists of at most one formula!
Axioms: A → A for atomic formulas A

Γ,A,B ,Π → ∆
Exch Left

Γ,B ,A,Π → ∆

A,A,Γ → ∆
Contr Left

A,Γ → ∆

Γ → ∆
Weak Left

A,Γ → ∆

Γ →Weak Right
Γ → A

Γ → A A,Γ → ∆
Cut

Γ → ∆

Γ → A
¬ Left

¬A,Γ →

A,Γ →
¬ Right

Γ → ¬A

A,B ,Γ → ∆
∧ Left

A ∧ B ,Γ → ∆

Γ → A Γ → B∧ Right
Γ → A ∧ B

A,Γ → ∆ B ,Γ → ∆
∨ Left

A ∨ B ,Γ → ∆

Γ → A∨ Right 1
Γ → A ∨ B

Γ → A∨ Right 2
Γ → B ∨ A

Γ → A B ,Γ → ∆
⊃ Left

A ⊃ B ,Γ → ∆

A,Γ → B
⊃ Right

Γ → A ⊃ B

A(t),Γ → ∆
∀ Left

∀xAx ,Γ → ∆

Γ → A(b)
∀ Right

Γ → ∀xAx

A(b),Γ → ∆
∃ Left

∃xAx ,Γ → ∆

Γ → A(t)
∃ Right

Γ → ∃xAx

Of course with the usual variable restrictions on (∀ Right) and (∃
Left).

Theorem. If Γ → ∆ is provable in LJ from axioms only, then it has
a cut-free proof.

Corollary. If → ∃xAx is provable in LJ from axioms only, then
there is a term t such that → A(t) is provable in LJ
If → A ∨ B is provable in LJ from axioms only, then either → A or
→ B is provable.

Kripke structures for a language L:
1. A partially ordered set P
2. For each p ∈ P a nonempty set D(p)
3. For each p ≤ q in P a function fpq : D(p) → D(q)
4. For every n-ary function symbol g of L and every p ∈ P a
function [g]p : D(p)n → D(p)
5. For every n-ary relation symbol R of L and every p ∈ P a
subset [R]p ⊂ D(p)n

Subject to the following conditions:
a.fpp is the identity function and for p ≤ q ≤ r we have:
fpr = fqr ◦ fpq

b. fpq([g]p(x1, . . . , xn)) = [g]q(fpq(x1, . . . , fpq(xn))
c. (x1, . . . , xn) ∈ [R]p ⇒ (fpq(x1, . . . , fpq(xn)) ∈ [R]q

We get, for any term t of L with free variables a1, . . . , an and
every p ∈ P , a function

[t]p : D(p)n → D(p)

which again satisfies:

fpq([t]p(x1, . . . , xn)) = [t]q(fpq(x1), . . . , fpq(xn))

for all x1, . . . , xn ∈ D(p).

Define a relation p φ[x1, . . . , xn] for p ∈ P , φ an L-formula with
free variables a1, . . . , an and x1, . . . , xn ∈ D(p):

p R(t1, . . . , tm)[~x] iff ([t1]p(~x), . . . , [tm]p(~x)) ∈ [R]p
p t = s[~x] iff [t]p(~x) = [s]p(~x)
p (φ ∧ ψ)[~x] iff p φ[~x] and p ψ[~x]
p (φ ∨ ψ)[~x] iff p φ[~x] or p ψ[~x]
p (φ ⊃ ψ)[~x] iff for all q ≥ p, if q φ[fpq(~x)] then q ψ[fpq(~x)]
p (¬φ)[~x] iff for all q ≥ p, q 6 φ[fpq(~x)]
p (∃yφ)[~x] if for some x ′ ∈ D(p), p φ[x ′, ~x]
p (∀yφ)[~x] if for all q ≥ p and all x ′ ∈ D(q), q φ[x ′, fpq(~x)]

Exercise: For all φ and ~x as above: if p φ[~x] and q ≥ p, then
q φ[fpq(~x)]

Example. Let:

P =

1

0

with D(0) = {x}, D(1) = {x , ξ} and f01 the inclusion.
Let [A]0 = ∅, [A]1 = {x}
[B]0 = {(x , x)}, [B]1 = {(x , x)}

Then 0 ∀y(A(x) ∨ B(x , y)) since for all η ∈ D(0), η = x and
0 B(x , x), and for all η ∈ D(1), 1 A(x) ∨ B(x , η) since
1 A(x).
However, 0 6 A(x) ∨ ∀yB(x , y): 0 6 A(x) is clear, and 1 6 B(x , ξ)
so 0 6 ∀yB(x , y).

We see that the implication

∀y(A(x) ∨ B(x , y)) ⊃ (A(x) ∨ ∀yB(x , y))

is not valid in Kripke models.

A Kripke structure for propositional logic is just a partially ordered
set P .
A truth assignment σ assigns to every propositional variable p a
subset σp of P which satisfies: if ξ ∈ σp and η ≥ ξ, then η ∈ σp.
We then define the relation ξ A[σ]:
ξ p[σ] iff ξ ∈ σp

ξ A ∧ B , ξ A ∨ B as before
ξ ¬A iff for all η ≥ ξ, η 6 A
ξ A ⊃ B iff for all η ≥ ξ, if η A then η B

Example: Let

P =

1

>>
>>

>>
>>

2

��
��

��
��

0

Let σp = {1}, σq = {2}.

Then 0 6 ((p ⊃ q) ∨ (q ⊃ p))[σ]

Theorem. Both for propositional and first-order logic, the
intuitionistic sequent calculus is sound and complete for Kripke
models.

Exercises, March 30:
1. Find a cut-free LJ-proof of the intuitionistic sequent
¬¬¬A → ¬A; and also one for → ¬¬(A ∨ ¬A)
2. Find Kripke countermodels for the following statements:
a. ((p ⊃ q) ⊃ p) ⊃ p
b. (φ ⊃ ∃xψ(x)) ⊃ ∃x(φ ⊃ ψ(x)) (x not in φ)

In general, one can get by, when constructing Kripke models for
statements not involving equalitiy axioms, with structures where,
for p ≤ q, D(p) ⊆ D(q).
For propositional logic, one can take the poset P to be a finite tree.

Some additional exercises:

3. Let P be a partially ordered set with a least element. Show that
the following two conditions are equivalent:
a. For any truth assignment, for every ξ ∈ P ,
ξ ((p ⊃ q) ∨ (q ⊃ p))
b. P is a linear order.

4. Let P be a partially ordered set. Prove that the following two
statements are equivalent:
a. For every Kripke structure for a language L on P and for every
L-sentence φ which is LK-valid, we have p ¬¬φ for every p ∈ P
b. For every p ∈ P there is an element q ≥ p such that q is
maximal in P .

For a hint: see next page

Hint for Exercise 4 of previous page:
For the direction b⇒a, note that if p is a maximal element in the
partially ordered set of a Kripke structure for a language L, then
p φ for every classically valid (i.e., LK-valid) L-sentence φ.

For the other direction, let L be the language {<} of orders; let

D(p) = {q ∈ P | q ≤ p}

(with fpq the inclusion) and < interpreted as the order on D(p)
inherited from P .

Consider the L-sentence φ:

∀x∃y(x < y) ∨ ∃x∀y¬(x < y)

and show that p φ precisely when p is a maximal element in P .

Some scattered facts about intuitionistic logic:
1. Let (·)− be the negative (Gödel-Gentzen) translation. Then it is
easy to prove by induction, that for propositional formulas φ,
LJ ⊢ (φ)− ↔ ¬¬φ. Combining this with the theory on p. 67, we
get Glivenko’s Theorem: for any propositional formula A, LK ⊢ A
if and only if LJ ⊢ ¬¬A. Warning: this does not hold for all
first-order formulas A!

Modulo LK-provable equivalence, there are exactly 22n

formulas in
the n propositional variables p1, . . . , pn.

Intuitionistically, the situation is more complicated: modulo
LJ-provable equivalence, there are infinitely many formulas in one
propositional variable p. These (equivalence classes of) formulas
constitute a lattice: the Rieger-Nishimura lattice or the free
Heyting algebra on one generator:

ω

...

NNNNNNN

ppppppp

NNNNNNNN

a3

tttttt

JJJJJJ

ttttttt

c2

IIIIII b2

uuuuuu

IIIIII

a2

uuuuuu

IIIIII d1

uuuuuu

c1

IIIIII b1

uuuuuu

IIIIII

a1

uuuuuu

IIIIII d0

uuuuuu

c0

JJJJJJ b0

tttttt

a0

with

ω = p ⊃ p
a0 = p ∧ ¬p
b0 = p
c0 = ¬p
di = ci ⊃ ai

ci+1 = di ⊃ bi

ai+1 = ci ∨ bi

bi+1 = ai+1 ∨ di

Proof of the second statement of 1.2.7.2: let a relation be
∆1-defined by I∆0; then it is ∆0-defined by I∆0 and I∆0 proves
the equivalence between the two definitions.
Since R is ∆1-defined there are formulas ∀~xψ(~x , ~y) and ∃~vχ(~v , ~y)
(with ψ,χ ∈ ∆0) which both define R , and

(1) I∆0 ⊢ ∀~y(∀~xψ(~x , ~y) ⊃ ∃~vχ(~v , ~y))
(2) I∆0 ⊢ ∀~y(∃~vχ(~v , ~y) ⊃ ∀~xψ(~x , ~y))

From (1) we get I∆0 ⊢ ∀~y∃~x∃~v(ψ(~x .~y) ⊃ χ(~v , ~y)), hence by
Parikh’s Theorem we get a term t(~y) such that

(3) I∆0 ⊢ ∀~y∃~x ≤ t(~y)∃~v ≤ t(~y)(ψ(~x , ~y) ⊃ χ(~v , ~y))

We conclude:

I∆0 ⊢ ∀~y(∀~x ≤ t(~y)ψ(~x , ~y) ⊃ ∃~v ≤ t(~y)χ(~v , ~y))

Then ∀~x ≤ t(~y)ψ(~x , ~y) is a ∆0-formula defining R .

Another important remark: let T be any arithmetical theory and f
a function. Then if f is Σ1-defined by T , it is in fact ∆1-defined:

For, suppose the Σ1-formula ∃~zAf (~x ,~z , y) defines the relation
f (~x) = y , with Af ∈ ∆0.
Then since T ⊢ ∀~x∃!y∃~zAf (~x ,~z , y) we have:

T ⊢ ∀~x, y(∃~zAf (~x ,~z , y) ↔ ∀~z∀w(Af (~x ,~z ,w) ⊃ w = y))

so the Π1-formula ∀~z∀w(Af (~x ,~z,w) ⊃ w = y) also defines f .

Exercises.
1. Express by a ∆0-formula φ that “there exist unique a and b
such that y = ax + b and b < x”, and prove that

I∆0 ⊢ ∀x > 0∀yφ

2.a) Give a formula φ such that ∃!x∃!yφ is true but ∃!y∃!xφ is
false.
b) Define a quantifier ∃!(a, b) for “ there is a unique pair (a, b)”,
and show that ∃!(a, b) is not equivalent to ∃!a∃!b.

Exercises for section 1.2.
1. Prove that in I∆0 the following sentence is provable:

∀xa∃z [∀k(1 ≤ k ≤ Len(x) ⊃ β(k, x) = β(k, z))
∧β(Len(x) + 1, z) = a]

2. Prove: BΣn+1 ⇒ IΣn and IΠn ⇔ LΣn.
3. The Ackermann function is defined by:

A(0, n) = n + 1
A(m + 1, 0) = A(m, 1)

A(m + 1, n + 1) = A(m,A(m + 1, n))

Prove that the graph of the Ackermann function is ∆1-definable by
IΣ1.
4. Prove that 2x−1 > x2 for all x ≥ 7. Conclude from this that
|x |2 < x whenever x > 36.

Exercises about Gödel’s Incompleteness Theorems. We work
with PA. In the exercises below you may assume that N is a model
of PA. When we say ‘true’, we mean: true in N.
Let G be the Gödel sentence: so PA ⊢ G ↔ ¬∃xPrf(x , pGq),
where Prf(x , y) is a ∆1-formula representing the relation: “y is
the Gödel number of a formula and x is a Gödel number of a proof
in PA of that formula”.
1. Prove that G is true.
2. Prove that PA 6⊢ G .
3. Prove that PA 6⊢ ¬G .

Elements of Partial Recursive Function Theory

Definition. A partial function N
k ⇀ N is a function U

f
→ N where

U ⊆ N
k . We write dom(f) for U. We also write f (~x)↓ (“f (~x) is

defined”) for: ~x ∈ dom(f).

Definition. A partial function f : N
k ⇀ N is defined by

minimization from a partial function g : N
k+1 ⇀ N if

dom(f) = {~x | ∃y [g(~x , y) = 0 and
∀i ≤ y (~x , i) ∈ dom(g)]}

and for all ~x ∈ dom(f), f (~x) is the least such y .
We write: f (~x) ≃ µy .g(~x , y) = 0.
Between expressions involving partial functions, the symbol “≃”
means: the LHS is defined precisely when the RHS is, and they
denote the same value if defined.

Definition. The class of partial recursive functions is the least class
of partial functions which contains all primitive recursive functions
and is closed under composition and minimization.

If f1, . . . , fk are n-ary partial recursive functions and g is k-ary
partial recursive, then the composition of g and f1, . . . , fk is the
n-ary partial function h, defined by

h(~x) ≃ g(f1(~x), . . . , fk(~x))

Here ~x ∈ dom(h) if and only if ~x ∈
⋂k

i=1 dom(fi) and
(f1(~x), . . . , fk(~x)) ∈ dom(g).

Theorem [Normal Form Theorem; Kleene] There are primitive
recursive functions T k , for each k > 0, and U, satisfying the
following:
For every partial recursive function f : N

k → N there is a number e
such that for all ~x ∈ N

k :

◮ ~x ∈ dom(f) ⇔ ∃y T k(e, ~x , y) = 0

◮ f (~x) ≃ U(µy .T k(e, ~x , y) = 0)

In view of the Normal Form Theorem, we write ϕ
(k)
e for f , and we

call e an index for the partial recursive function f .

Theorem The system of indices for partial recursive functions has
the following properties:

a) For every k-ary partial recursive f there are infinitely many

indices e such that f = ϕ
(k)
e

b) (Sm
n -Theorem) There are primitive recursive functions Sm

n for
each n > 0, m > 0, such that for each
e, x1, . . . , xm, y1, . . . , yn:

ϕSm
n (e,x1,...,xm)(y1, . . . , yn) ≃ ϕ

(m+n)
e (x1, . . . , xm, y1, . . . , yn)

c) For each k > 0 the partial function

e, x1, . . . , xk 7→ ϕ
(k)
e (x1, . . . , xk)

is partial recursive.

Theorem [Recursion Theorem; Kleene] Let F : N
k+1 ⇀ N be a

partial recursive function. Then there is an index e such that for all
~x ∈ N

k :
ϕ

(k)
e (~x) ≃ F (~x , e)

Corollary. The partial recursive functions are closed under primitive
recursion: if g : N

k ⇀ N and h : N
k+2 ⇀ N are partial recursive

and f : N
k+1 ⇀ N is defined by

f (~x , 0) ≃ g(~x)
f (~x , y + 1) ≃ h(~x , f (~x , y), y)

then f is partial recursive. Here (~x , y) ∈ dom(f) if and only if
~x ∈ dom(g) and for all i < y ,

(~x , f (~x , i), i) ∈ dom(h)

Proof. Let sg(y) be the primitive recursive function such that
sg(0) = 0 and sg(y + 1) = 1; and let sg(y) = 1−̇sg(y).
Let γ be an index for g and ι an index for h. Consider the partial
function F (~x , y , e), given by

sg(y)·ϕ(k)
γ (~x) + sg(y)·ϕ(k+2)

ι (~x , ϕ
(k+1)
e (~x , y−̇1), y−̇1)

Then F is partial recursive. By the recursion theorem, there is an
index e such that for all ~x , y ,

ϕ
(k+1)
e (~x , y) ≃ F (~x , y , e)

It follows, that ϕ
(k+1)
e (~x , y) ≃ f (~x , y).

Corollary [The “Halting Problem”; Turing] There is no partial
recursive function f such that for all e and x1, . . . , xk we have:

f (e, ~x) = 0 if ~x ∈ dom(ϕ
(k)
e), and f (e, ~x) = 1 otherwise.

Proof. Suppose such f exists. Let g be a partial recursive function
such that dom(g) = N − {0} (for example, g(x) ≃ µy .x ·y > 1).
By the recursion theorem, let e be an index such that for all ~x ,

ϕ
(k)
e (~x) ≃ g(f (e, ~x))

Then ~x ∈ dom(ϕ
(k)
e) ⇔ f (e, ~x) 6= 0 ⇔ ~x 6∈ dom(ϕ

(k)
e); a

contradiction.

Heyting Arithmetic

Heyting Arithmetic (HA) is the intuitionistic version of Peano
Arithmetic. The language and axioms are the same:

1) S(x) 6= 0

2) S(x) = S(y) ⊃ x = y

3) x + 0 = x

4) x + S(y) = S(x + y)

5) x ·0 = 0

6) x ·S(y) = x ·y + x

7) φ(0) ∧ ∀x(φ(x) ⊃ φ(S(x))) ⊃ ∀xφ(x) for all φ

But the logic is given by the calculus LJ.

Although the logic of HA is intuitionistic, one can still prove
instances of the ‘Law of Excluded Middle’:
HA ⊢ ∀xy(x = y ∨ ¬(x = y))
HA ⊢ ∀xy(x < y ∨ x = y ∨ x > y)
where the order < is defined as: x < y ≡ ∃z(x + S(z) = y)
These things are proved by induction.
In general, HA ⊢ φ ∨ ¬φ when φ is a ∆0-formula.

We wish to define a nontrivial interpretation of HA into classical,
ordinary mathematics. We cannot use an ordinary model, because
then φ ∨ ¬φ would be true for all formulas.

Realizability (Kleene; 1945) In the following, we assume that
x , y 7→ 〈x , y〉 is a primitive recursive bijection N × N → N, with
primitive recursive inverse x 7→ ((x)0, (x)1). So every number x is
regarded as code of an ordered pair.

Consider a formula φ(u1, . . . , un) with free variables u1, . . . , un. For
a number e and an n-tuple of numbers k1, . . . , kn, we define what
it means that

e realizes φ[k1, . . . , kn]

by induction on the formula φ

e realizes φ[k1, . . . , kn] if and only if N |= φ[k1, . . . , kn], if φ is an
atomic formula
e realizes (φ ∧ ψ)[k1, . . . , kn] if and only if (e)0 realizes
φ[k1, . . . , kn] and (e)1 realizes ψ[k1, . . . , kn]
e realizes (φ∨ψ)[k1, . . . , kn] if and only if either (e)0 = 0 and (e)1
realizes φ[k1, . . . , kn], or (e)0 6= 0 and (e)1 realizes ψ[k1, . . . , kn]
e realizes (φ ⊃ ψ)[k1, . . . , kn] if and only if for each number a such
that a realizes φ[k1, . . . , kn], we have ϕe(a)↓ and ϕe(a) realizes
ψ[k1, . . . , kn]
e realizes (¬φ)[k1, . . . , kn] if and only if no number realizes
φ[k1, . . . , kn]
e realizes (∃xφ)[k1, . . . , kn] if and only if (e)1 realizes
φ[(e)0, k1, . . . , kn]
e realizes (∀xφ)[k1, . . . , kn] if and only if for each number m,
ϕe(m)↓ and ϕe(m) realizes φ[m, k1, . . . , kn]

Main Theorem (Kleene)
1. For every sentence φ such that HA ⊢ φ, there is a number e
such that e realizes φ.
2. There is a Π1-formula ∀nψ(m, n) such that the sentence

∀m [∀nψ(m, n) ∨ ¬∀nψ(m, n)]

is not realized by any number.

Hence, realizability is a nontrivial interpretation of HA.

We shall start by looking at point 2.
Definition. An almost negative formula is a formula which
contains ∨ and ∃ only between (viz. before) ∆0-formulas. Note,
that every ∆0-formula is almost negative.

Theorem on Almost Negative Formulas. Let φ be an almost
negative formula with free variables u1, . . . , un.
1. There is a partial recursive function tφ of n variables such that
for all n-tuples k1, . . . , kn we have: if N |= φ[k1, . . . , kn] then
tφ(k1, . . . , kn) is defined and realizes φ[k1, . . . , kn]
2. If a number e realizes φ[k1, . . . , kn] then N |= φ[k1, . . . , kn]

This theorem is proved by induction on the structure of φ. First a
Lemma:
∆0-Lemma For every ∆0-formula φ(u1, . . . , un) there is a
primitive recursive function sφ such that for all n-tuples k1, . . . , kn

the following hold:
1. If N |= φ[~k] then (sφ(~k))0 = 0 and (sφ(~k))1 realizes φ[~k]

2. If N 6|= φ[~k] then (sφ(~k))0 6= 0
Proof: Exercise!

Proof of the Theorem on Almost Negative Formulas: we define the
partial recursive functions tφ by recursion on the structure of φ,
and we prove at the same time properties 1 and 2 by simultaneous
induction on φ.
For atomic φ, let tφ(~k) = 0. The proof of 1 and 2 is by definition.

For ∃xφ with φ ∈ ∆0 we put t∃xφ(~k) ≃ 〈a, b〉, where

a = µy .(sφ(y , ~k))0 = 0

b = (sφ(a, ~k))1

Here sφ is the primitive recursive function from the ∆0-Lemma.
For φ ∧ ψ we put

tφ∧ψ(~k) ≃ 〈tφ(~k), tψ(~k)〉

For φ ⊃ ψ: Let e be an index such that for all ~k,m,

ϕ
(n+1)
e (~k ,m) ≃ tψ(~k). Then put

tφ⊃ψ(~k) = Sn
1 (e, ~k)

where Sm
1 is from the Sm

n -Theorem.

Proof of 1 and 2 in this case: First, suppose N |= (φ ⊃ ψ)[~k]. We
always have tφ⊃ψ(~k)↓ since Sn

1 is primitive recursive. Suppose m

realizes φ[~k]. Then N |= φ[~k] by induction hypothesis, so N |= ψ[~k]
by assumption. Hence by induction hypothesis tψ(~k) is defined and

realizes ψ[~k], but tψ(~k) is just the partial recursive function with

index tφ⊃ψ(~k), applied to m. We conclude that tφ⊃ψ(~k) realizes

(φ ⊃ ψ)[~k], as desired.
Conversely, suppose m realizes (φ ⊃ ψ)[~k]. Suppose N |= φ[~k].

Then tφ(~k) is defined and realizes φ[~k], hence ϕ
(n)
m (tφ(~k)) is

defined and realizes ψ[~k]. By induction hypothesis, N |= ψ[~k]. We
conclude that N |= (φ ⊃ ψ)[~k].

For ∀xφ, let e be an index such that for all m, ~k ,

ϕ
(n+1)
e (~k ,m) ≃ tφ(m, ~k). Put

t∀xφ(~k) ≃ Sn
1 (e, ~k)

Convince yourself that this works (Exercise!). This finishes the
proof of the Theorem on Almost Negative Formulas.

To finish the proof of Part 2 of the Main Theorem: let ψ(e,m, y)
be a ∆1-formula which represents the relation: T 1(e,m, y) 6= 0.
So ∀yψ(e,m, y) is an almost negative formula which represents

the relation: ϕ
(1)
e (m) is undefined.

Suppose k realizes the sentence

∀em[∀yψ(e,m, y) ∨ ¬∀yψ(e,m, y)]

Then for all e,m, φ
(2)
k (e,m) is defined and:

(ϕ
(2)
k (e,m))0 = 0 ⇒ (ϕ

(2)
k (e,m))1 realizes ∀yψ(e,m, y)

(ϕ
(2)
k (e,m))0 6= 0 ⇒ (ϕ

(2)
k (e,m))1 realizes ¬∀yψ(e,m, y)

Then by the Theorem on Almost Negative Formulas we have:

ϕ
(1)
e (m) is defined, precisely if (ϕ

(2)
k (e,m))0 6= 0. But this

contradicts the unsolvability of the Halting Problem.
This proves part 2 of the Main Theorem.

Proof sketch of Part 1 of the Main Theorem: if HA ⊢ φ then there
is a number e such that e realizes φ.
This is done by induction on HA-proofs. One needs to check the
axioms and rules of intuitionistic predicate logic, and the
arithmetical axioms.
Starting with the induction axiom:

∀~y [φ(0, ~y) ∧ ∀x(φ(x , ~y) ⊃ φ(Sx , ~y)) ⊃ ∀xφ(x , ~y)]

Since the partial recursive functions are closed under primitive
recursion we can find an index e such that for all ~k, d ,m

ϕ
(n+2)
e (~k , d , 0) = (d)0

ϕ
(n+2)
e (~k , d ,m + 1) ≃ Ψ((d)1,m, ϕ

(n+2)
e (~k , d ,m))

where Ψ(a, b, c) ≃ ϕ
(1)

ϕ
(1)
a (b)

(c).

Let f be such that ϕ
(n+2)
f (e, ~k , d) = Sn+1

1 (e, ~k , d).

Now suppose d realizes φ(0, ~k) ∧ ∀m(φ(m, ~k) ⊃ φ(S(m), ~k)), so
(d)0 realizes φ(0, ~k) and (d)1 realizes ∀m(φ(m, ~k) ⊃ φ(S(m), ~k)).

One now proves that ϕ
(n+2)
f (e, ~k , d) realizes ∀mφ(m, ~k).

Hence, Sn+1
1 (f , e, ~k) realizes

[φ(0, ~k) ∧ ∀m(φ(m, ~k) ⊃ φ(S(m), ~k)) ⊃ ∀mφ(m, ~k)]

So if ϕ
(n)
e′ (~k) = Sn+1

1 (f , e, ~k) then e′ realizes

∀~k [· · ·]

The rest of the proof consists in verifying realizability for the other
axioms of HA (this is easy) and the axioms and rules of
intuitionistic predicate logic.
For this, a “Hilbert-type” proof system (instead of a sequent
calculus) is most convenient. We omit this, but leave as
Exercise Verify realizability for the rule

B ⊃ A(x)

B ⊃ ∀xA(x)

with x not free in B . That is: suppose B ,A(x) are LHA-formulas.
Show that there is a partial recursive function F , such that for
every a with the property that for every k, ϕa(k) is defined and
realizes B ⊃ A(x)[k], F (a) is defined and realizes B ⊃ ∀xA(x).

A variation of realizability: ⊢-realizability
e ⊢-realizes φ[~k] iff N |= φ[~k], for φ atomic
e ⊢-realizes (φ ∧ ψ)[~k] iff (e)0 ⊢-realizes φ[~k] and (e)1 ⊢-realizes
ψ[~k]
e ⊢-realizes φ ∨ ψ[~k] iff either (e)0 = 0 and (e)1 ⊢-realizes φ[~k], or
(e)0 6= 0 and (e)1 ⊢-realizes ψ[~k]
e ⊢-realizes φ ⊃ ψ[~k] if HA ⊢ φ(~k) ⊃ ψ(~k) and for every a such
that a ⊢-realizes φ[~k], ϕe(a) is defined and realizes ψ[~k]
e ⊢-realizes (∃xφ)[~k] iff (e)1 ⊢-realizes φ[(e)0, ~k]
e ⊢-realizes (∀xφ)[~k] iff HA ⊢ ∀xφ(x , ~k) and for every m, ϕe(m) is
defined and ⊢-realizes φ[m, ~k]

Again we have:

If HA⊢ φ then for some e, e ⊢-realizes φ

But also:
If e ⊢-realizes φ[~k] then HA⊢ φ(~k)

We obtain the following derived rules for HA:
1. If HA ⊢ A ∨ B then HA ⊢ A or HA ⊢ B
(Disjunction Property for HA)
2. If HA ⊢ ∃xA(x) then for some number m, HA ⊢ A(m)
(Existence Property of HA)
3. If HA ⊢ ∀x∃yA(x , y) then for some number e,

HA ⊢ ∀x∃y(T 1(e, x , y) = 0 ∧ A(x ,U(y)))

(assuming function symbols for T and U conservatively added to
HA, with axioms about their behaviour)
which states: “every total relation contains the graph of a total
recursive function”. This is called Church’s Rule for HA.
Exercise Show that there is no Church’s Rule for PA.

