
Exam Proof Theory
June 15, 2011, 13.00–16.00

SOLUTIONS All exercises were worth 16 points; the provisional grade was

computed by the formula g = s+4

10
, where s is the total number of points;

then bonus points were added to obtain the final grade

Problem 1:
Give a complete cut-free proof (that is: give every inference step) of the
sequent

¬∀x¬R(x) → ∃xR(x)

where R is a unary predicate symbol.

Solution:

R(a) → R(a)
∃ right

R(a) → ∃xR(x)
¬ right

→ ∃xA(x),¬R(a)
∀ right

→ ∃xR(x), ∀x¬R(x)
¬ left

¬∀x¬R(x) → ∃xR(x)

The top formula is an axiom because R(a) is an atomic formula. If you
started with an application of ¬ right, obtaining → R(a),¬R(a), you’d need
to insert Exchange right in order to be able to continue; failure to do so would
cost 2 points. Students who mistakenly applied ∀ right first (not allowed,
since there is still a free variable floating around), or otherwise produced a
wrong proof, could get at most 8 points.

Problem 2:
Let φ be the sentence

∀y(∃vR(v) ⊃ ∃w(S(y, w) ∨ ∀xT (x, w)))

where R, S, T are predicate symbols.

a) Give a prenex normal form for φ

b) Give a Skolemization of φ

c) Give a Herbrandization of φ
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Solution: for instance

a) (5 points) ∀y∀v∃w∀x(R(v) ⊃ (S(y, w) ∨ T (x, w)))

b) (5 points) ∀y∀v∀x(R(v) ⊃ (S(y, f(y, v))∨ T (x, f(y, v))))

c) (6 points) ∃w(R(c) ⊃ (S(d, w) ∨ T (g(w), w)))

Problem 3:
Give a definition (by induction on φ) of the notions of a positive subformula

and a negative subformula of a formula φ, such that the following statement
is true:

Whenever a sequent A1, . . . , As → B1, . . . , Bt appears in a cut-
free proof with end-sequent Γ → ∆, then every Ai occurs as a
positive subformula of some formula in Γ or as a negative subfor-
mula of a formula in ∆, and the same (with roles reversed) for
the Bj.

[Hint: there is some subtlety required with the clauses for the quantifiers]

Solution: As formulated, this exercise also had a trivial solution: every sub-
formula of φ is both positive and negative. The one student noting this was
also smart enough to come up with the intended solution which is: define,
by induction on φ, what the positive and negative subformulas of φ are:

If φ is atomic, φ is a positive subformula of φ and φ does not have
negative subformulas;

if φ is ψ ∨ χ or ψ ∧ χ then the positive subformulas of φ are φ itself or
the positive subformulas of either ψ or χ; the negative subformulas of
φ are the negative subformulas of either ψ or χ;

if φ is ψ ⊃ χ then the positive subformulas of φ are φ itself, the posi-
tive subformulas of χ and the negative subformulas of ψ; the negative
subformulas of φ are the negative subformulas of χ and the positive
subformulas of ψ;

if φ is ¬ψ then the positive subformulas of φ are φ itself and the neg-
ative subformulas of ψ; the negative subformulas of φ are the positive
subformulas of ψ
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if φ is ∃xψ(x) or ∀xψ(x) then the positive subformulas of φ are φ itself
and the positive subformulas of ψ(t) for some term t; the negative
subformulas of φ are the negative subformulas of ψ(t) for some term t.

What was the ‘subtlety’? This exercise was modelled after an exercise in
Girard’s book (p. 115). Girard’s definition in the case of quantifiers is: if φ
is ∀xψ(x) then a positive subformula of φ is φ itself or a positive subformula
of ψ(a) where a is a free variable; a negative subformula of φ is a negative
subformula of ψ(t) for some term t (suggesting that the definition for ∃xψ(x)
is dual, with roles reversed). However, this is wrong as the following proof
shows:

R(t) → R(t)

R(t) → ∃xR(x)

∀yR(y) → ∃xR(x)

where t is a term which is not a variable. Then the LHS occurrence of R(t)
in the axiom is neither a negative subformula of ∃xR(x) nor (in Girard’s
definition) a positive subformula of ∀yR(y).

So, no subtlety, really. Some students managed to reproduce Girard’s
mistake; no points were deducted.

Some students tried to define the notion ‘ψ is a positive/negative subfor-
mula of φ’ by induction on ψ instead of φ. This is plainly wrong, since the
sign of a subformula is not determined by its shape but by its place within

the ambient formula.

Problem 4:
Let L be a language with just two binary predicate symbols R, S. Let φ be
a negative L-formula (that is: φ does not contain ∃ or ∨).

Prove: if the sequent → φ has an LK-proof, then the sequent

∀xy(¬¬R(x, y) ⊃ R(x, y)), ∀xy(¬¬S(x, y) ⊃ S(x, y)) → φ

has an LJ-proof (i.e., an intuitionistic proof).

Solution: Since → φ has an LK-proof, its negative translation → (φ)− has
an LJ-proof. And because φ does not contain ∃ or ∨, (φ)− is just φ with a
double negation ¬¬ added before every atomic formula, that is: before every
appearance of the relation symbols R and S.
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Now the antecedent of the given sequent implies the equivalence of R(s, t)
and ¬¬R(s, t) (and same for S) for any terms s, t; so from (φ)− and the
antecedent of the sequent one can prove φ.

Problem 5:
Let L be a language with one constant c, one unary function symbol f and
two unary predicate symbols R and S. Consider the L-sentences:

φ1 R(c)
φ2 ∀x(R(x) ⊃ R(f(x))
φ3 ∀x¬(R(x) ∧ S(x))
φ4 ¬∀x¬S(x)

Prove that the sequent φ1, φ2, φ3, φ4 → ∃xS(x) has no LJ-proof.

Solution: This could be done in three ways. The first method was to ob-
serve that the sentences φ1, . . . , φ4 are Harrop formulas. Hence, if there
were an LJ-proof φ1, . . . , φ4 → ∃xS(x) then there would be an LJ-proof of
φ1, . . . , φ4 → S(t) for some closed term t. However, the only closed terms
are c, f(c), f(f(c)), . . . and clearly φ1, . . . , φ4 imply ¬S(t) for such t. So the
only way the desired LJ-proof could exist is that φ1, . . . , φ4 is inconsistent;
but clearly, it has a model.

The second method was by constructing a Kripke-countermodel. The
simplest such is a model on the poset 0 < 1, with X0 = {a}, X1 = {a, b};
with X0 → X1 the inclusion. Define R0 = R1 = {a}, S0 = ∅, S1 = {b}, let a
be the interpretation of c, and interpret f by the function which has value a
on every argument.

The third method was by arguing directly about a possible cut-free LJ-
proof of φ1, . . . , φ4 → ∃xS(x). This is possible because S(x) is an atomic
formula. However, there are many cases to consider and it is hard to make
such a proof rigorous. I omit details.

Problem 6:
Recall that we showed in the course that there is a ∆0-formula φ(x, y) of
arithmetic for which the following holds:

N |= φ(n,m) ⇔ m = 2n

for arbitrary n,m ∈ N.
Which of the theories I∆0, IΣ1, IΠ1 prove the sentence ∀x∃yφ(x, y)? Ex-

plain your answer.
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Solution: I∆0 does not prove the sentence; otherwise, by Parikh’s theorem,
it would prove ∀x∃y ≤ t(x)φ(x, y) for some term t(x) of arithmetic. Then
the function 2x would be bounded by a polynomial; contradiction. This was
worth 5 points.

IΣ1 proves the sentence. In the lecture we proved that in IΣ1 all primitive
recursive functions are total, so we only have to see that 2x is primitive
recursive. But 20 = 1 and 2x+1 = 2(2x), so this is clear. This part gave 6
points.

IΠ1 also proves the sentence. This follows from the previous case and the
observation, proved in the lecture, that IΠ1 = IΣ1. This was worth 5 points.
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