Exam Proof Theory

June 15, 2011, 13.00-16.00
SOLUTIONS All exercises were worth 16 points; the provisional grade was computed by the formula $g=\frac{s+4}{10}$, where s is the total number of points; then bonus points were added to obtain the final grade

Problem 1:

Give a complete cut-free proof (that is: give every inference step) of the sequent

$$
\neg \forall x \neg R(x) \rightarrow \exists x R(x)
$$

where R is a unary predicate symbol.
Solution:

$$
\begin{gathered}
\frac{R(a) \rightarrow R(a)}{R(a) \rightarrow \exists x R(x)} \exists \text { right } \\
\frac{\rightarrow \exists x A(x), \neg R(a)}{} \neg \text { right } \\
\rightarrow \exists \exists x R(x), \forall x \neg R(x) \\
\neg \forall x \neg R(x) \rightarrow \exists x R(x) \\
\text { right }
\end{gathered}
$$

The top formula is an axiom because $R(a)$ is an atomic formula. If you started with an application of \neg right, obtaining $\rightarrow R(a), \neg R(a)$, you'd need to insert Exchange right in order to be able to continue; failure to do so would cost 2 points. Students who mistakenly applied \forall right first (not allowed, since there is still a free variable floating around), or otherwise produced a wrong proof, could get at most 8 points.

Problem 2:

Let ϕ be the sentence

$$
\forall y(\exists v R(v) \supset \exists w(S(y, w) \vee \forall x T(x, w)))
$$

where R, S, T are predicate symbols.
a) Give a prenex normal form for ϕ
b) Give a Skolemization of ϕ
c) Give a Herbrandization of ϕ

Solution: for instance
a) (5 points) $\forall y \forall v \exists w \forall x(R(v) \supset(S(y, w) \vee T(x, w)))$
b) $\quad(5$ points $) \forall y \forall v \forall x(R(v) \supset(S(y, f(y, v)) \vee T(x, f(y, v))))$
c) $\quad(6$ points $) \exists w(R(c) \supset(S(d, w) \vee T(g(w), w)))$

Problem 3:

Give a definition (by induction on ϕ) of the notions of a positive subformula and a negative subformula of a formula ϕ, such that the following statement is true:

Whenever a sequent $A_{1}, \ldots, A_{s} \rightarrow B_{1}, \ldots, B_{t}$ appears in a cutfree proof with end-sequent $\Gamma \rightarrow \Delta$, then every A_{i} occurs as a positive subformula of some formula in Γ or as a negative subformula of a formula in Δ, and the same (with roles reversed) for the B_{j}.
[Hint: there is some subtlety required with the clauses for the quantifiers]
Solution: As formulated, this exercise also had a trivial solution: every subformula of ϕ is both positive and negative. The one student noting this was also smart enough to come up with the intended solution which is: define, by induction on ϕ, what the positive and negative subformulas of ϕ are:

If ϕ is atomic, ϕ is a positive subformula of ϕ and ϕ does not have negative subformulas;
if ϕ is $\psi \vee \chi$ or $\psi \wedge \chi$ then the positive subformulas of ϕ are ϕ itself or the positive subformulas of either ψ or χ; the negative subformulas of ϕ are the negative subformulas of either ψ or $\chi ;$
if ϕ is $\psi \supset \chi$ then the positive subformulas of ϕ are ϕ itself, the positive subformulas of χ and the negative subformulas of ψ; the negative subformulas of ϕ are the negative subformulas of χ and the positive subformulas of ψ;
if ϕ is $\neg \psi$ then the positive subformulas of ϕ are ϕ itself and the negative subformulas of ψ; the negative subformulas of ϕ are the positive subformulas of ψ
if ϕ is $\exists x \psi(x)$ or $\forall x \psi(x)$ then the positive subformulas of ϕ are ϕ itself and the positive subformulas of $\psi(t)$ for some term t; the negative subformulas of ϕ are the negative subformulas of $\psi(t)$ for some term t.

What was the 'subtlety'? This exercise was modelled after an exercise in Girard's book (p. 115). Girard's definition in the case of quantifiers is: if ϕ is $\forall x \psi(x)$ then a positive subformula of ϕ is ϕ itself or a positive subformula of $\psi(a)$ where a is a free variable; a negative subformula of ϕ is a negative subformula of $\psi(t)$ for some term t (suggesting that the definition for $\exists x \psi(x)$ is dual, with roles reversed). However, this is wrong as the following proof shows:

$$
\frac{\frac{R(t) \rightarrow R(t)}{R(t) \rightarrow \exists x R(x)}}{\forall y R(y) \rightarrow \exists x R(x)}
$$

where t is a term which is not a variable. Then the LHS occurrence of $R(t)$ in the axiom is neither a negative subformula of $\exists x R(x)$ nor (in Girard's definition) a positive subformula of $\forall y R(y)$.

So, no subtlety, really. Some students managed to reproduce Girard's mistake; no points were deducted.

Some students tried to define the notion ' ψ is a positive/negative subformula of ϕ^{\prime} by induction on ψ instead of ϕ. This is plainly wrong, since the sign of a subformula is not determined by its shape but by its place within the ambient formula.

Problem 4:

Let \mathcal{L} be a language with just two binary predicate symbols R, S. Let ϕ be a negative \mathcal{L}-formula (that is: ϕ does not contain \exists or \vee).

Prove: if the sequent $\rightarrow \phi$ has an LK-proof, then the sequent

$$
\forall x y(\neg \neg R(x, y) \supset R(x, y)), \forall x y(\neg \neg S(x, y) \supset S(x, y)) \rightarrow \phi
$$

has an LJ-proof (i.e., an intuitionistic proof).
Solution: Since $\rightarrow \phi$ has an LK-proof, its negative translation $\rightarrow(\phi)^{-}$has an LJ-proof. And because ϕ does not contain \exists or $\vee,(\phi)^{-}$is just ϕ with a double negation $\neg \neg$ added before every atomic formula, that is: before every appearance of the relation symbols R and S.

Now the antecedent of the given sequent implies the equivalence of $R(s, t)$ and $\neg \neg R(s, t)$ (and same for S) for any terms s, t; so from $(\phi)^{-}$and the antecedent of the sequent one can prove ϕ.

Problem 5:

Let \mathcal{L} be a language with one constant c, one unary function symbol f and two unary predicate symbols R and S. Consider the \mathcal{L}-sentences:

$$
\begin{array}{ll}
\phi_{1} & R(c) \\
\phi_{2} & \forall x(R(x) \supset R(f(x)) \\
\phi_{3} & \forall x \neg(R(x) \wedge S(x)) \\
\phi_{4} & \neg \forall \neg \neg(x)
\end{array}
$$

Prove that the sequent $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4} \rightarrow \exists x S(x)$ has no LJ-proof.
Solution: This could be done in three ways. The first method was to observe that the sentences $\phi_{1}, \ldots, \phi_{4}$ are Harrop formulas. Hence, if there were an LJ-proof $\phi_{1}, \ldots, \phi_{4} \rightarrow \exists x S(x)$ then there would be an LJ-proof of $\phi_{1}, \ldots, \phi_{4} \rightarrow S(t)$ for some closed term t. However, the only closed terms are $c, f(c), f(f(c)), \ldots$ and clearly $\phi_{1}, \ldots, \phi_{4}$ imply $\neg S(t)$ for such t. So the only way the desired LJ-proof could exist is that $\phi_{1}, \ldots, \phi_{4}$ is inconsistent; but clearly, it has a model.

The second method was by constructing a Kripke-countermodel. The simplest such is a model on the poset $0<1$, with $X_{0}=\{a\}, X_{1}=\{a, b\}$; with $X_{0} \rightarrow X_{1}$ the inclusion. Define $R_{0}=R_{1}=\{a\}, S_{0}=\emptyset, S_{1}=\{b\}$, let a be the interpretation of c, and interpret f by the function which has value a on every argument.

The third method was by arguing directly about a possible cut-free LJproof of $\phi_{1}, \ldots, \phi_{4} \rightarrow \exists x S(x)$. This is possible because $S(x)$ is an atomic formula. However, there are many cases to consider and it is hard to make such a proof rigorous. I omit details.

Problem 6:

Recall that we showed in the course that there is a Δ_{0}-formula $\phi(x, y)$ of arithmetic for which the following holds:

$$
\mathbb{N} \models \phi(n, m) \Leftrightarrow m=2^{n}
$$

for arbitrary $n, m \in \mathbb{N}$.
Which of the theories $\mathrm{I} \Delta_{0}, \mathrm{I} \Sigma_{1}, \mathrm{I} \Pi_{1}$ prove the sentence $\forall x \exists y \phi(x, y)$? Explain your answer.

Solution: I Δ_{0} does not prove the sentence; otherwise, by Parikh's theorem, it would prove $\forall x \exists y \leq t(x) \phi(x, y)$ for some term $t(x)$ of arithmetic. Then the function 2^{x} would be bounded by a polynomial; contradiction. This was worth 5 points.
$I \Sigma_{1}$ proves the sentence. In the lecture we proved that in I Σ_{1} all primitive recursive functions are total, so we only have to see that 2^{x} is primitive recursive. But $2^{0}=1$ and $2^{x+1}=2\left(2^{x}\right)$, so this is clear. This part gave 6 points.
I_{1} also proves the sentence. This follows from the previous case and the observation, proved in the lecture, that $I \Pi_{1}=I \Sigma_{1}$. This was worth 5 points.

