PROOF THEORY TUTORIAL SESSION 1

Jeroen Goudsmit

Wednesday February 9th 2011

EXERCISE I — Frege Proofs

Axioms		
$\mathbf{K}: p \supset (q \supset p)$	$\mathbf{S}^*: (p \supset q) \supset (p \supset q \supset r) \supset (p \supset r)$	
$\mathbf{II}: p \supset (p \lor q)$	$\mathbf{Ir}:(q\supset (p\lor q))$	
$\mathbf{Pl}:(p \land q) \supset p$	$\mathbf{Pr}:(p\wedge q)\supset q$	
$\mathbf{I}: (p \supset r) \supset (q \supset r) \supset (p \lor q \supset r)$	$\mathbf{P}:p\supset q\supset p\wedge q$	
$\mathbf{Ni}: (p \supset q) \supset (p \supset \neg q) \supset \neg p$	$\mathbf{Ne}:\neg\neg p\supset p$	

Inference Rules

 $\frac{p \qquad p \supset q}{q} modus ponens$

Figure 1: Frege Proof System for Propositional Classical Logic

In the lecture we discussed the proof system depicted in Figure 1. For convenience, all axioms are given a label. These labels correspond to the names from combinatorial logic. This exercise is about constructing proofs in this system.

EXERCISE I.A — Implicational Fragment

Prove the following, within the Frege proof system of Figure 1. Do *not* use the Deduction Theorem, but construct the proofs by hand.

- (i) $p \supset p$, call this Id
- (ii) $q \supset p \supset p$, call this \mathbf{K}^*
- (iii) $q \supset (p \supset q \supset r) \supset p \supset r$
- (iv) $p \supset (p \supset q) \supset q$

EXERCISE I.B — Some Laws

The Deduction Theorem is a useful tool in proving the existence of proofs in the Frege proof system. Recall that it is formulated as below.

Theorem 1 (Deduction Theorem). Suppose there is a proof of q under the assumptions Γ , p. Now there also exists a proof of $p \supset q$ under the assumptions Γ .

Proof. The proof proceeds by induction on the structure of the assumed proof. In the base case we have a formula ϕ , which is either in Γ or it is p. If it is in Γ , the proof "*modus ponens* on $\phi \supset p \supset \phi$ (an instance of **K**) and ϕ " satisfies our demands. Otherwise, the proof **Id** of Exercise 1.1.(i) does.

For the induction step, we have a proof of "*modus ponens* of $\phi \supset \psi$ on ϕ ". By induction we know of proofs of $p \supset \phi$ and $p \supset \phi \supset \psi$. The desired proof is obtained by two applications of *modus ponens* and the previously constructed proof on $(p \supset \phi) \supset (p \supset \phi \supset \psi) \supset p \supset \psi$, which is an instance of **S**^{*}.

Lemma 1. There is a proof C of $(p \supset q) \supset (q \supset r) \supset p \supset r$ in the Frege system of Figure 1.

Proof. Below we construct a proof of $p \supset r$, under the assumptions $p \supset q$ and $q \supset$.

1.	$p \supset q$	by assumption
2.	$(q\supset r)\supset p\supset q\supset r$	Κ
3.	$q \supset r$	by assumption
4.	$p \supset (q \supset r)$	modus ponens on 2 and 3
5.	$(p\supset q)\supset (p\supset q\supset r)\supset p\supset r$	S*
6.	$(p\supset q\supset r)\supset p\supset r$	modus ponens on 5 and 1
7.	$p \supset r$	modus ponens on 6 and 4

Now using the Deduction Theorem, we know of a proof $(q \supset r) \supset p \supset r$ under the assumption of $p \supset q$. Another application of the deduction theorem yields the desired.

Prove the following laws, using the Deduction Theorem.

(i)
$$(r \supset a) \supset (r \supset b) \supset r \supset (a \land b)$$

(ii) $(p \supset a) \supset (q \supset b) \supset (p \land q) \supset (a \land b)$
(iii) $(p \land q) \lor r \supset (p \lor r) \land (q \lor r)$
(iv) $(p \supset q \supset r) \supset (p \land q) \supset r$
(v) $((p \land q) \supset r) \supset p \supset q \supset r$
(vi) $(q \supset (p \land \neg p)) \supset \neg q$
(vii) $\neg q \supset q \supset (p \land \neg p)$

(viii)
$$p \supset \neg \neg p$$

The laws (i) and (ii) describe how to form implications into a conjunction. Can you think of laws about implications starting at a disjunction?