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In the third lecture we discussed first order logic, as covered by Buss () in Section . and .. Below a brief
recapitulation and a couple of exercises. Some of the formulations below are adapted from van Oosten andMoerdijk
().¹

  — First Order Logic

We are concerned with expressions in a first order language. Su a language contains a set of function symbols of
a given arity, and a set of relation symbols of a given arity. One can think of a nullary function symbol (a function
symbol with arity zero) as a constant symbol.

Definition  (Language). A language L is a pair ⟨fun(L), rel(L)⟩, where fun(L) is the set of function symbols
and rel(L) is the set of relation symbols of L. To ea function symbol f and relation symbol R there is a natural
number called its arity, wrien respectively as arity f and arityR.

Definition  (Terms and Formulae). Let L be a language and let V be a countably infinite set of variables. e set
of terms over L, denoted by T (L), is defined inductively as follows.²

T (L) ∋ f(t1, . . . , tn) if f is a function symbol with arity n and t1, . . . , tn are terms
T (L) ∋ x if x is a variable

e set of formulae, denoted by L(L), is defined inductively as below.

L(L) ∋ t = s if t and s are terms
L(L) ∋ R(t1, . . . , tn) if f is a relation symbol with arity n and t1, . . . , tn are terms
L(L) ∋ ϕ C ψ if ϕ and ψ are formulae and C = ∧,∨,⊃
L(L) ∋ ¬ϕ if ϕ is a formula
L(L) ∋ Qϕ(x) if ϕ is a formula, x is a variable and Q = ∀x, ∃x

Intuitively, placing a quantifier ∀x in front of a formula ϕ “binds” the variable x in the thusly created expression.
All variables whi occur in ϕ that are not bound in su a way are called free, and we can define this formally
below.

¹In particular, some of the exercises below are taken directly from this text.
²Do note that this definition includes the equality relation within the definition of formulae. is is not the case in Buss (), but one can
simply include the relation symbol = and add the proper axioms to ea theory. See van Oosten and Moerdijk () for a hint as to what
these axioms ought to be.





Definition  (Free Variables). Given a formula ϕ over the language L, we define the set of free variables as below,
proceeding by induction on the structure of both terms and formulae.

FV(x) := x
FV(f(t1, . . . , tn)) :=

∪n
i=1 FV(tn)

FV(t = s) := FV(t) ∪ FV(s)
FV(R(t1, . . . , tn)) :=

∪n
i=1 FV(tn)

FV(ϕ C ψ) := FV(ϕ) ∪ FV(ψ) where C = ∧,∨,⊃
FV(¬ϕ) := FV(ϕ)
FV(Qϕ) := FV(ϕ)− {x} where Q = ∀x,∃x

A variable x whi occurs in ϕ but is not free is said to be a bound variable. If ϕ contains no free variables, we say
that ϕ is a sentence.

Buss (, Section ..) explains that one can define terms in a different manner, encoding the fact whether a
variable is bound within the very syntax.

In order to give meaning to a formula we develop a system of semantics. In this classical case the type of meaning
we wish to assign to a sentence is that of truth; a sentence is either true of false. To be able to interpret the terms, we
need a structure whi reflects the syntactic structure of the terms of the language.

Definition  (Structure). Let L be a language. A structure M over L is a triple ⟨M,F,R⟩ where

(i) M is a non-empty set;

(ii) F is a family of functions toM indexed by fun(L) su that Ff :M arity f →M for ea function symbol f ;

(iii) R is a family of relations indexed by rel(L) su that RP ⊆M arityP for ea relation symbol P .

We write fM for Ff and PM for RP for function symbols f and relation symbols P . We oen will write M to
mean the underlying setM .

In order to interpret terms, one needs to assign a value to the variables occurring within this term. So to interpret
a given term t in the structure M it suffices to have a partial map from the set of variables to M, defined on
the variables occurring in t. We call su a map an object assignment of L on M. Given an object assignment
σ : V → M, a variable x and m ∈ M we define σ(m/x) as the map whi sends x to m and whi behaves
exactly as σ on all other variables.

Definition  (Interpretation). Let L be a language, let M be a structure over L and let σ be an object assignment
of L onM. We define the interpretation of a term t of L inM under σ, wrien as tM[σ], inductively as below.

xM[σ] := σ(x)

f(t1, . . . , tn)
M
[σ] := fM

(
t1

M[σ], . . . , tn
M[σ]

)
Equipped with the above interpretation of terms we can inductively define the interpretation of a formula ϕ of L
inM under the object assignment σ, denotedM |= ϕ[σ].

M |= t = s[σ] if and only if tM[σ] = sM[σ]
M |= P (t1, . . . , tn)[σ] if and only if

(
t1

M[σ], . . . , tn
M[σ]

)
∈ PM

M |= ϕ ∧ ψ[σ] if and only if M |= ϕ[σ] andM |= ϕ[σ]
M |= ϕ ∨ ψ[σ] if and only if M |= ϕ[σ] orM |= ϕ[σ]
M |= ϕ ⊃ ψ[σ] if and only if M |= ϕ[σ] impliesM |= ϕ[σ]

M |= ¬ϕ[σ] if and only if M |= ϕ[σ] is not true
M |= ∀xϕ[σ] if and only if M |= ϕ[σ(m/x)] holds for allm ∈ M
M |= ∃xϕ[σ] if and only if M |= ϕ[σ(m/x)] holds for somem ∈ M

We now say that ϕ is valid in M, wrien as M |= ϕ, if M |= ϕ[σ] is true for all σ. Finally, ϕ is said to be true
when ϕ is valid in all structures. Given a set of sentences Γ, we say thatM is a model for Γ wheneverM |= γ for
all γ ∈ Γ.





In Exercise ., ., . and . we make use of the binary relation symbol of equality. It is implicitly understood
that all theories there include the proper axioms for equality.

 . — Rationals

Consider the language L whi has the binary function symbol ·, wrien for convenience in infix form. ere
are the obvious L-structures Z and Q, where · is interpreted as usual multiplication. Give formulae ϕ0(x) and
ϕ1(x) su that S |= ϕi(x) holds exactly if x = i for S = Z,Q.³ Find a sentence whi is true in Z but not in
Q.

 . — Contraction- and Cut Free

Can you find a contraction- and cut-free proof of the sequent ∃xA(x) → B from the sequent A(a), A(b) → B?
If not, why?

 . — Partially Ordered Sets

Let L be the language of posets, whi has the binary relation symbol ≤. Write down the axioms for reflexivity,
transitivity and anti-symmetry in this language. Realize thatx < y holds precisely ifx ≤ y and x ̸= y. Consider the
language L′ whi extends L by the symbol for strict inequality<. Define the proper axiom(s). Prove that this new
theory does not entail density, i.e. show that the following formula is not provable.

∀x∀y
(
x ≤ y ⊃ ∃z(x ≤ z ∧ z ≤ z)

)
.

 . — Groups

LetL be the languagewhihas one nullary function symbol e and a binary function symbol ·. Ea group can easily
be made into an L-structure. Write down the axioms for a group in L, and call this theory Γ. Make sure thatG is a
group precisely if the correspondingL-structure is a model ofΓ. (i) Define a theory su that only the infinite groups
are models of this theory. (ii) Find a theory whose only models are abelian groups.

 . — Commutative (Unitary) Rings

Let L be the language of rings, whi has the nullary function symbols 0 and 1 and the binary function symbols+
and ·. Ea ring can be made into a L structure. (i) Find a theory Γ su that the models of this theory are precisely
the commutative unitary rings. (ii) Find a formula ϕ su that R |= Γ, ϕ precisely if R is a local ring. (iii) Extend
the language of L to L′ by adding an unary relation symbol I . As a consequence, I aracterizes a subset of any
L′-structure. Find the theory Γ ⊆ ∆ needed to ensure that I aracterizes an ideal of the ∆-models. (iv) Find a
theory Γ ⊆ Π su that Π-models make I into a prime ideal. (v) Find a theory Γ ⊆ Λ su that Λ-models make I
into a maximal ideal.
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³By ϕ(x) we mean that the set of free variables of ϕ is contained in {x}.
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