SEminAR ULTRACATEGORIES: HAND-IN CHAPTER 4

To be handed in on March 27.

Throughout this exercise, \mathcal{M} is an arbitrary ultracategory, T is a set, and $\left\{M_{t}\right\}_{t \in T}$ is a collection of objects of \mathcal{M}. For $t \in T$, we define the arrow $\underline{M}_{t} \rightarrow\left(\beta T, \mathcal{O}_{\beta T}\right)$ of $\operatorname{Comp}_{\mathcal{M}}$ to be the map corresponding (via Remark 4.2.6) to $\delta_{t} \in \beta T$ and

$$
\mathcal{O}_{\beta T, \delta_{t}}=\int_{T} M_{t^{\prime}} d \delta_{t} \xrightarrow{\varepsilon_{T, t}} M_{t}
$$

(a) Show that these maps exhibit $\left(\beta T, \mathcal{O}_{\beta T}\right)$ as the coproduct of the collection of objects $\left\{\underline{M}_{t}\right\}_{t \in T}$ in the category $\operatorname{Comp}_{\mathcal{M}} \cdot[3 \mathrm{pt}]$
Now let T_{0} be a subset of T, and write $u: T_{0} \hookrightarrow T$ for the inclusion map. We write $u_{*}: \beta T_{0} \hookrightarrow$ βT for the corresponding continuous map given by $u_{*} \nu=\int_{T_{0}} \delta_{t_{0}} d \nu$. Observe that this is just the pushforward map along u as provided by Definition 1.1.4. For each $\nu \in \beta T_{0}$, we have the ultraproduct diagonal map $\Delta_{\nu, u}$, defined as the composition:

$$
\int_{T} M_{t} d\left(u_{*} \nu\right)=\int_{T} M_{t} d\left(\int_{T_{0}} \delta_{t_{0}} d \nu\right) \xrightarrow{\Delta_{\mu, \delta \bullet}} \int_{T_{0}}\left(\int_{T} M_{t} d \delta_{t_{0}}\right) d \nu \xrightarrow{\int_{T_{0}} \varepsilon_{T, t_{0}} d \nu} \int_{T_{0}} M_{t_{0}} d \nu
$$

We define the natural transformation $\alpha: \mathcal{O}_{\beta T} \circ u_{*} \rightarrow \mathcal{O}_{\beta T_{0}}$ by $\alpha_{\nu}=\Delta_{\nu, u}$ for $\nu \in \beta T_{0}$.
(b) Show that $\left(u_{*}, \alpha\right):\left(\beta T_{0}, \mathcal{O}_{\beta T_{0}}\right) \rightarrow\left(\beta T, \mathcal{O}_{\beta T}\right)$ is a cartesian morphism of Comp ${ }_{\mathcal{M}}$. [3pt. Beware: showing that this morphism is cartesian is not the difficult part of this exercise.]
For $t_{0} \in T_{0}$, we have that $u_{*} \delta_{t_{0}}=\delta_{t_{0}}$.
(c) Show that the diagram

commutes for every $t_{0} \in T_{0}$. [2pt]
(d) Use the previous exercises to conclude that the map (u_{*}, α) from exercise (b) is the canonical map $\bigsqcup_{t_{0} \in T_{0}} \underline{M_{t_{0}}} \rightarrow \bigsqcup_{t \in T} \underline{M_{t}}$ between coproducts. [2pt]

