Seminar Ultracategories - Hand in exercise 5

Tim Baanen

To be handed in 3rd April, 2019

In the lectures, we have seen that $\operatorname{Fun}^{\operatorname{LUlt}}(X, \operatorname{Set}) \simeq \operatorname{Shv}(X)$ for compact Hausdorff spaces X. We will also prove in later lectures that $\operatorname{Fun}^{\operatorname{LUlt}}(\operatorname{Mod}(\mathcal{C}), \operatorname{Set}) \simeq \operatorname{Shv}(\mathcal{C})$ for pretoposes \mathcal{C} . In this exercise, we will look at the situation for a different set of ultracategories.

Let P be a complete linear order, i.e. a linear order such that all subsets of P have a least upper and greatest lower bound. Note that P, as a poset category, is then also complete, hence it has a categorical ultrastructure.

- 1. (2pt.) Show that the category Stone_P is equivalent to the category with:
- Objects (X, f), where X is a Stone space and $f: X \to P$ is a function such that for all μ there is an $S_0 \in \mu$ and $s \in S_0$ with $f(\int_{s \in S} x_s d\mu) \leq f(x_s)$;
- Arrows $(X, f) \xrightarrow{\phi} (Y, g)$ are continuous functions $\phi: Y \to X$ such that for all $y \in Y$, $g(y) \leq f(\phi(y))$.

2. (3pt.) Let A_P be the topology on P where a set $U \subseteq P$ is open iff it is an upset (i.e. $x \in U$ and $x \leq y$ imply $y \in U$). Show that $\mathsf{Shv}(A_P)$ is equivalent to $\operatorname{Fun}(P, \mathsf{Set})$.¹

- 3. (2pt.) Show that all functors in Fun(P, Set) have a left ultrastructure.
- 4. (3pt.) Can we conclude that $\operatorname{Fun}^{\operatorname{LUlt}}(P, \operatorname{Set})$ is equivalent to $\operatorname{Shv}(A_P)$?

¹Note that A_P is almost never a Stone space since it is almost never Hausdorff: if there are $x < y \in P$, then all opens containing x also contain y.