Exercise 1

Prove lemma 1 of Lifschitz (1979): there exists a unary partial recursive function α such that for every *e*, if $|V_e| = 1$ then $\alpha(e)$ is defined and $\alpha(e) \in V_e$. (2 *points*)

Exercise 2

In this exercise we examine two instances in which $HA + CT_0$ contradicts classical logic.

a) Show that, for an appropriate choice of formula A(x), the sentence $\forall x(\neg A(x) \lor \neg \neg A(x))$ is not derivable in **HA** + CT₀. (2.5 *points*)

For the second contradiction, the following may prove useful:

b) Show that the sets $A = \{x \mid \exists y(Txxy \land U(y) = 0)\}$ and $B = \{x \mid \exists y(Txxy \land U(y) = 1)\}$ are recursively inseparable. (2.5 *points*)

Now, we have the following:

c) Show that, for an appropriate choice of functions α , β , the sentence

$$\forall x (\neg (\exists y (\alpha(x,y) = 0) \land \exists y (\beta(x,y) = 0)) \rightarrow \neg \exists y (\alpha(x,y) = 0) \lor \neg \exists y (\beta(x,y) = 0))$$

is not derivable in $HA + CT_0$. (3 points)