Seminar on Models of Intuitionism

Hand-in exercise 11

11 May (due 18 May)

Exercise 1. Let G be some fixed group with neutral element e. We say that G has a (left) action on a set X if there is some operation $G \times X \to X$ denoted by $(g, x) \mapsto g \cdot x$ such that for any $x \in X$ and $g, h \in G$ the following equalities hold: $e \cdot x = x$ and $h \cdot (g \cdot x) = (hg) \cdot x$. If G acts on a set X, then we call X a G-set.

If X and Y are two G-sets, then an *equivariant map* (or G-map) is a map of sets $f: X \to Y$ such that $g \cdot f(x) = f(g \cdot x)$ for any $x \in X$ and $g \in G$.

In this exercise we will consider the category G-Set whose objects are G-sets and whose morphisms are G-maps (with function composition)¹. One can show that this category is connectionally closed. The exercises ask you to partly verify this.

A general hint for the exercises: the forgetful functor U: G-Set \rightarrow Set which sends each G-set to its underlying set is a c.c. functor.

(a) Show that the category G-Set has products. (2 points)

(b) Prove that G-Set has exponentials. (Hint: Start by examining the evaluation arrow.) (3 points)

Exercise 2. For the equations (4), (5), (7), (10) and (12) from the handout, write down the two deductions that the equation identifies. $(5 \times 1 \text{ point})$

¹Fun fact for category theory lovers: this category is equivalent to the functor category Set^G (where we view G as a category with a single object and group elements as arrows). The requirement on G-maps is simply the naturality of the natural transformations. If one were to consider right group actions, then this category is equivalent to the category of presheaves on G.