Seminar on models of Intuitionism

Hand-in exercise 12 May 17, 2017

Exercise 1. Let H be an aH algebra.

- (a) (2 points) Prove the prime filter existence theorem: for every filter F on H and $x \in H$ such that $x \notin F$, there is a prime filter P such that $F \subseteq P$ and $x \notin P$.
- (b) (3 points) Consider the evaluation map $e: H \to 2^{[H,2]}$, given by e(x)(i) = i(x). Use part (a) to prove that the map e is injective.

Exercise 2. The completeness theorem we have this week is for minimal logic, with the possibility to extend that with additional axioms. To obtain **IPC** one would have to add a notion of falsehood. By adding an initial object¹ **f** to C we obtain the category of proofs of intuitionistic logic. We interpreted the functor $F : C \to \mathbf{Set}^{\mathbb{Z}}$ to be the proof assignment of a certain set of proofs (a \mathbb{Z} -set) to every formula. It would be natural to require the set of proofs of falsehood to be empty, that is $F(\mathbf{f}) = \emptyset$. In this exercise we will see that if we require this, our completeness theorem becomes false. So we let C be connectially closed with initial object **f** (i.e. bicartesian closed) and let $F : C \to \mathbf{Set}^{\mathbb{Z}}$ be a connectially closed functor such that $F(\mathbf{f}) = \emptyset$ (i.e. bicartesian closed). See below for a few facts you may use.

- (a) (3 points) We interpret $\neg A$ to be the formula $A \to \mathbf{f}$, as usual. It is well-known that $\neg A \lor \neg \neg A$ is not provable in **IPC**, so $\mathcal{C}(\mathbf{t}, \neg A \lor \neg \neg A) = \emptyset$ (where \mathbf{t} is the terminal object we have seen last week). Show that $\mathbf{Set}^{\mathbb{Z}}(F(\mathbf{t}), F(\neg A \lor \neg \neg A)) \neq \emptyset$. This invalidates our completeness theorem because the emptiness of $\mathcal{C}(\mathbf{t}, \neg A \lor \neg \neg A)$ is then never preserved.
- (b) (2 points) Why not take A ∨ ¬A as a counterexample? Well, simply because it is not a counterexample. Show that there is a proof assignment F(A) such that Set^Z(F(t), F(A ∨ ¬A)) = Ø. You do not have to construct the entire functor F, just show that there is a Z-set X such that if F(A) = X there is no arrow F(t) → F(A ∨ ¬A).

You may of course use the homework from last week (in particular exercise 1), and may regard the hint given there as a fact (i.e. the forgetful functor $U : \mathbf{Set}^{\mathbb{Z}} \to \mathbf{Set}$ is a connectially closed functor). Additionally, you may assume that for \mathbb{Z} -sets X and Y a coproduct X + Yis given by the set $X \sqcup Y = \{0\} \times X \cup \{1\} \times Y$ with as group action

$$n \cdot (i, z) = \begin{cases} (i, n \cdot_X z) & \text{if } i = 0\\ (i, n \cdot_Y z) & \text{if } i = 1 \end{cases}$$

Finally, you may assume that the singleton $\{*\}$ is a terminal object in $\mathbf{Set}^{\mathbb{Z}}$.

¹An initial object \mathbf{f} in a category \mathcal{C} is an object such that there is exactly one arrow from \mathbf{f} to A for every object A in \mathcal{C} .