Seminar on Models of Intuitionism

Hand-in exercise 4 March 9, 2017 (due March 16)

In these exercises, T denotes the Baire space.

Exercise 1. We interpret the predicate ' $x \in \mathbb{Q}$ ' on the toplogical model by setting

$$\llbracket \xi \in \mathbb{Q} \rrbracket = \bigcup_{q \in \mathbb{Q}} \llbracket \xi = q \rrbracket,$$

for $\xi \in \mathcal{R}$. Inside the brackets, q denotes the constant function $T \to \mathbb{R}$ taking the value q.

(a) 1 point. Let A(x) be a formula in one free variable (possibly with parameters in \mathcal{R}) and suppose that $[\![\forall xy(A(x) \land x = y \to A(y))]\!] = T$. Show that

$$\llbracket \exists x \, (x \in \mathbb{Q} \land A(x)) \rrbracket = \bigcup_{q \in \mathbb{Q}} \llbracket A(q) \rrbracket.$$

(b) 2 points. Show that the sentence

$$\forall x, y (x < y \rightarrow \exists z (z \in \mathbb{Q} \land (x < z < y))$$

is valid in the toplogical model.

(c) 2 points. Give an example of a continuous function $\xi: T \to \mathbb{R}$ such that

$$\llbracket \xi \in \mathbb{Q} \rrbracket \neq \operatorname{Int} \{ t \in T \colon \xi(t) \in \mathbb{Q} \}.$$

Exercise 2. Let $\xi \in \mathcal{R}$ and $\varphi \in \mathcal{R}^{\mathcal{R}}$ and consider the continuous function $\alpha : T \times (0, \infty) \to \mathbb{R}$ given by

$$\alpha(s,\delta) = \sup\{|\Phi(s,\xi(s)) - \Phi(s,a)| \colon a \in \mathbb{R} \text{ and } |\xi(s) - a| \le \delta\}.$$

Here $\Phi: T \times \mathbb{R} \to \mathbb{R}$ is the continuous function associated to φ , as defined in the lecture.

(a) 1 point. Explain why $\alpha(s, \delta)$ is always defined and why α is continuous, and show that for a fixed $s \in T$, we have $\alpha(s, \delta) \to 0$ when $\delta \to 0$.

Let $\varepsilon \in \mathcal{R}$. Suppose we have a $t \in T$ such that $\varepsilon(t) > 0$. By exercise (a), there is a $\delta > 0$ such that $\alpha(t, \delta) < \varepsilon(t)$.

(b) 2 points. Show that for such a δ , we have:

$$t \in \operatorname{Int} \bigcap_{\eta \in \mathcal{R}} \operatorname{Int}(\{s \in T \colon |\xi(s) - \eta(s)| \ge \delta\} \cup \{s \in T \colon |\Phi(s, \xi(s)) - \Phi(s, \eta(s))| < \varepsilon(s)\}).$$

(c) 2 points. Show that the sentence

$$\forall f \forall x \forall \varepsilon (\varepsilon > 0 \rightarrow \exists \delta (\delta > 0 \land \forall y (x - \delta < y < x + \delta \rightarrow f(x) - \varepsilon < f(y) < f(x) + \varepsilon)))$$

is valid in the topological model. Here the addition symbol is interpreted in the topological model as pointwise addition of continuous functions $T \to \mathbb{R}$, and similarly for substraction.