Seminar on Models of Intuitionism

Hand-in exercise 5

16 March (due 23 March)

Exercise 1. In the exercises below you may use (without proof) that addition, multiplication, bounded sums, bounded products, bounded minimalisation and sign are all primitive recursive. Let $F: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ be primitive recursive. Show that the following functions are all primitive recursive:
(a) $\lambda x \cdot x$!
(0.5 points)
(b)
$\lambda x \cdot \operatorname{pd}(x)$ where $\operatorname{pd}(x)= \begin{cases}0 & \text { if } x=0 \\ x^{\prime} & \text { if } x=x^{\prime}+1\end{cases}$
$\lambda x y . x-y$ where $x-y= \begin{cases}x-y & \text { if } y \leq x \\ 0 & \text { else }\end{cases}$
$\lambda x y . x \leq y$ where $(x \leq y)= \begin{cases}0 & \text { if } x \leq y \\ 1 & \text { else }\end{cases}$
$\lambda x y \cdot x=y$ where $(x=y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { else }\end{cases}$
(c)
(1 point)
$\lambda \vec{x} z . \forall_{y<z}(F(\vec{x}, y)=0)$ where $\forall_{y<z}(F(\vec{x}, y)=0)= \begin{cases}0 & \text { if } \forall y<z \text { we have } F(\vec{x}, y)=0 \\ 1 & \text { else }\end{cases}$
$\lambda x y . x \nmid y$ where $x \nmid y= \begin{cases}0 & \text { if } x \nmid y \\ 1 & \text { else }\end{cases}$
(d) $\lambda x \cdot \operatorname{prime}(x)$ where $\operatorname{prime}(x)= \begin{cases}0 & \text { if } x \text { is prime } \\ 1 & \text { else }\end{cases}$
(e) $\lambda n . p_{n}$ where p_{n} is the n-th prime number and $p_{0}=1$

Exercise 2. A recursive function ${ }^{1} F: \mathbb{N} \rightarrow \mathbb{N}$ is called self-describing if $F=\varphi_{e}$ and e is the least integer k with $F(k) \neq 0$. Prove that there exists a self-describing function.
(1.5 points)

Exercise 3. Let $H=\left\{(f, x) \mid \varphi_{f}(x)\right.$ is defined $\}$ be the Halting Problem. Let K be the Diagonal Halting Problem, i.e. $K=\left\{x \mid \varphi_{x}(x)\right.$ is defined $\}$.
(a) Show that there is a recursive function F such that $(x, y) \in H$ iff $F(x, y) \in K$.
(b) Conclude that χ_{K} is not recursive.

[^0]
[^0]: ${ }^{1} \mathrm{~A}$ recursive function is a total partial recursive function.

