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 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 57, Number 1, March 1992

 LAMBEK'S CATEGORICAL PROOF THEORY
 AND LAUCHLI'S ABSTRACT REALIZABILITY

 VICTOR HARNIK AND MICHAEL MAKKAI

 Introduction. In this paper we give an introduction to categorical proof theory,
 and reinterpret, with improvements, Liuchli's work on abstract realizability re-
 stricted to propositional logic (but see [M1] for predicate logic). Partly to make
 some points of a foundational nature, we have included a substantial amount of
 background material. As a result, the paper is (we hope) readable with a knowledge
 of just the rudiments of category theory, the notions of category, functor, natural
 transformation, and the like. We start with an extended introduction giving the
 background, and stating what we do with a minimum of technicalities.

 0.1. In three publications [L1, 2, 3] published in the years 1968, 1969 and 1972,
 J. Lambek gave a categorical formulation of the notion of formal proof in deduc-
 tive systems in certain propositional calculi. The theory is also described in the re-
 cent book [LS]. See also [Sz].

 The basic motivation behind Lambek's theory was to place proof theory in the
 framework of modern abstract mathematics. The spirit of the latter, at least for the
 purposes of the present discussion, is to organize mathematical objects into
 mathematical structures. The specific kind of structure we will be concerned with is
 category.

 In Lambek's theory, one starts with an arbitrary theory in any one of several
 propositional calculi. One has the (formal) proofs (deductions) in the given theory of
 entailments A => B, with A and B arbitrary formulas. One introduces an equivalence
 relation on proofs under which, in particular, equivalent proofs are proofs of the
 same entailment; equivalence of proofs is intended to capture the idea of the proofs
 being only inessentially different. One forms a category whose objects are the
 formulas of the underlying language of the theory, and whose arrows from A to B,
 with the latter arbitrary formulas, are the equivalence classes of formal proofs of
 A => B. Let us refer to the category briefly described thus as the category of proofs;
 it depends, among others, on the particular theory under consideration.
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 PROOF THEORY AND ABSTRACT REALIZABILITY 201

 Let us note that Lambek's method has been extended by F. W. Lawvere, and

 others following Lawvere, to cover predicate logic. In this case the categorical

 structures involved are more complex; they are special kinds of fibrations. See also

 [M1] and [M2].

 The most important consequence of the laying down of a specific kind of

 structure is the immediate availability of a corresponding concept of isomorphism of

 two structures of the given kind. The notion of isomorphism serves to eliminate
 inessential features of the original mathematical objects under consideration. Any
 two isomorphic structures are considered essentially identical; more precisely, only

 those properties of structures are considered that are invariant under isomorphism.
 Thus, the generalization involved in passing from concrete mathematical objects to a

 class of abstract ones entails a narrowing of the focus of the theory, by restricting

 attention to properties invariant under isomorphism. A first test of the success of the

 concept formation is whether the properties of the original objects in which we were
 interested in the first place are indeed invariant under isomorphism.

 In Lambek's theory, the category structure of the category of proofs contains all

 the necessary abstract information. To be sure, the category of proofs is far from

 being an arbitrary category; however, any category isomorphic to it is just as good

 as the one constructed initially out of formulas and proofs in any of the theorems
 we want to prove. In fact, the first main step of categorical proof theory is to

 characterize the categories obtained as categories of proofs in terms of invariant
 (that is, category theoretic) properties. The importance of Lambek's theory is largely
 due to the fact that this characterization can be made in terms of concepts that are
 familiar in category theory, thus showing that proof theory does not require a

 "different kind of category theory". In particular, the category of proofs is a car-

 tesian closed category (with additional properties), a central concept in category

 theory.
 The aim of this paper is to show the fruitfulness of Lambek's categorical proof

 theory by showing that H. LUuchli's main result in [La] on abstract realizability has
 a simple formulation, via Lambek's theory, within category theory as a represen-
 tation theorem of a familiar kind. The reformulation is a theorem in pure category
 theory, and it is proved in a correspondingly abstract fashion, without any explicit
 reference to concepts of logic. Nevertheless, the steps of the proof are related in
 important ways to logic: in particular, to Kripke's model theory for intuitionistic
 logic. Rather than trying to "eliminate" logic, we are aiming at establishing its
 connections to abstract ("structuralist") mathematics.

 The category theoretic reformulation suggests ways of strengthening Lhuchli's
 theorem. We give two such strengthenings; their proofs, in our context, are as
 natural as that of the original Luchli theorem. Further interesting questions arise
 that we do not answer.

 0.2. The notion of intuitionistic proof of a first order statement has a well-
 known informal description due to A. Heyting [He]. It proceeds by induction on the
 complexity of the statement. From the point of view of classical mathematics, all
 parts of this description except one can be stated in precise terms. The exceptional
 part concerns the proofs of atomic statements; it says that a proof of such a
 statement is just a verification of its truth. What such a verification is depends on the
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 202 VICTOR HARNIK AND MICHAEL MAKKAI

 particular context; for example, in the framework of arithmetic, a verification is a

 pair of computations showing that the two terms of an equality have the same value.

 It is not clear how to formulate this part of Heyting's description in general but
 precise terms. Nevertheless, the attempts to circumvent this difficulty and come up

 with a mathematical definition were particularly useful. Several authors equated
 provability of atomic statements with their truth, and formalized, in one of several

 possible ways, the rest of Heyting's description, thus obtaining a definition of

 "realizability". Such a definition tells us when a certain object "realizes" a given

 formula; the realizing objects are natural numbers in Kleene's version [IM] and

 functionals of finite type in Kreisel's (see [Tr]).
 LUuchli took an interesting departure. (In explaining LUuchli's idea, we restrict

 ourselves to propositional logic, although [La] deals with predicate logic as well; for
 an analysis of LUuchli's work on predicate logic in a spirit similar to this paper, see

 [M1] and [M2].) He assigned to every atomic formula A an arbitrary abstract set
 p[A] of "proofs" of A. Then, using the clauses of Heyting's description, he extended

 the function p to associate with every formula A the set pEA] of its "proofs". The
 "proofs" of composite formulas are, in general, maps. For example, the proofs of the

 implication A -+ B, i.e. the elements of p[A -+ B], are the functions from p[A] to
 p[B] (intuitively, to prove A -- B is to have a way of transforming a proof of A into a
 proof of B); in other words, p[A -, B] = p[B]P[A]. We are not repeating the full

 definition of pE-] here, as it will become explicit in the course of the paper anyway.
 (In comparison with, e.g., Kleene realizability, an obvious difference is the lack of

 an interpretation giving a priori meaning to the (atomic) formulas. In fact, we should
 imagine the meaning of A also provided by the elements of the set p[A]. Thus, an

 element of p[A] is a meaning together with a proof that A is true under that
 meaning.)

 With LUuchli, we ask if there is a completeness theorem for intuitionistic
 (propositional) logic using the notion of abstract proof introduced. For brevity,

 let us call an abstract proof-assignment p as described above a model (of pure

 intuitionistic propositional logic with a given stock of atomic sentences; for

 generalizations, see below). The completeness theorem should say that for an
 arbitrary formula A in intuitionistic propositional logic, A has a proof in the usual
 sense if and only if, for all models p [-], A has an abstract proof with respect to p; that
 is, p[A] is nonempty. The first remark is that the soundness ("only if") part of this

 assertion is easy (however, we will have a better view of it soon). The essential "if"
 part is false as things are at the moment, since for A = (mi P) -, P we always have
 p[A] # 0. LUuchli's decisive idea was to replace sets as the values of the assignment
 p by more complex objects, namely, sets with a distinguished permutation. The latter
 we call Z-sets (since they are the same as sets with an action of the additive group Z
 of integers). The point is that the operations on sets that underlie the inductive
 clauses of the definition of p (e.g., the exponentiation of sets used in the clause for
 implication) have natural counterparts for Z-sets. Let us then talk about a Z-set-
 valued model with Lauchli's replacement in mind. The condition of nonemptiness
 of pEA] is strengthened to the existence of an invariant element of p[A]; that is,
 of an element of p[A] fixed by the distinguished permutation of p[A].
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 0.2.1. LXUCHLI'S COMPLETENESS THEOREM (for intuitionistic propositional

 logic). A formula is provable in intuitionistic propositional logic iff it has an invariant
 abstract proof in every Z-set-valued model.

 Essentially as a by-product of our analysis, we improve and generalize Lhuchli's
 theorem. First of all, instead of pure logic, we consider an arbitrary underlying
 theory consisting of a set of axioms T. Now, the notion of a model of T is just that of
 a model of the pure calculus in which p[A] has an invariant element for any axiom
 A e T.

 0.2.2. EXTENDED LKUCHLI'S COMPLETENESS THEOREM. A formula is provable in a

 countable theory in intuitionistic propositional logic if it has an invariant abstract

 proof in every Z-set-valued model of the theory.

 A theory T has the disjunction property (a well-known concept; see, for example,

 [IM] or ELS]) if for all A and B, T V A v B only if either T -A or T V B. Our
 second improvement is the

 0.2.3. UNIFORM EXTENDED LXUCHLI COMPLETENESS THEOREM. Suppose that the

 countable theory T in intuitionistic propositional logic has the disjunction property.

 Then there is a Z-set-valued model p of T such that, for any formula A, A is provable
 in T if A has an invariant abstract proof in p.

 Since pure logic (the empty theory) has the disjunction property, 0.2.3 indeed
 strengthens 0.1.1.

 Although we have not spelled out the definition of "(Z-set-valued) model", we
 have to mention one peculiarity of it, which is the handling of the (identically) false
 atom f. As usual, our primitives are f, t (= true), A, v and -A, negation m A being
 understood as A -+ f. Contrary to a natural expectation, p[f] is not defined to be
 the empty (Z-) set; as LUuchli points out, his theorem would become false if we
 were to do so. Instead, f is considered to be just another atomic formula, but all

 axioms f -+ A are to have (invariant) proofs. Thus, implicitly, a nonempty theory,
 with axioms the f -+ A, is brought in even in the case of pure logic. (LUuchli deals
 with this issue in a more direct manner, which results in an, in our minds at least,
 inessential strengthening of the notion of "model". From our point of view, with

 arbitrary axioms allowed, one does not have to say anything at all about f.)
 0.3. Now let us bring the Lambek theory and the Liuchli theory together. In the

 Lambek theory, the category of proofs is a bicartesian closed (b.c.) category. This
 and related notions will be explained in ?1. To give an idea of the notion, it suffices
 to say here that a b.c. category has, among others, an exponentiation operation
 on objects, defined within the category structure, through a so-called universal
 property. In the category of (formulas and) proofs, the formula A -+ B is the ex-
 ponential BA. Set, the category of sets and functions, is b.c.; in Set, exponentiation
 is the usual set-exponentiation. Also, Set', the category of Z-sets and equivariant
 maps between them (respecting the action of Z), is b.c. (and more ...). We have the
 natural notion of a b.c. functor between b.c. categories: a functor preserving the

 operations defining "b.c.". For example, a b.c. functor F takes BA to (FA)FB.
 Because of Lauchli's difficulties with 'false', we give up the initial object in the

 definition of "bicartesian closed"; we get what we have chosen to call a con-
 nectionally closed (c.c.) category. So, certainly, the category of proofs can be
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 204 VICTOR HARNIK AND MICHAEL MAKKAI

 construed as a c.c. category [although one should note that, as a category, the

 c.c. category of proofs is not the same as Lambek's bicartesian closed category of

 proofs; the two have the same objects, and the arrows come from the same proofs,

 but in the c.c. category the identification of arrows is less stringent]. We also have
 c.c. functors.

 The main point of contact between the two theories is that a set-valued or Z-set-

 valued model is the same as the object function of a connectionally closed functor from
 the category of proofs to Set (respectively, to Set').

 Note that, in the definition of "proof assignment" (model), LUuchli does not talk
 about the effect of his p[-] on anything like proofs (although, after the definition, in
 [Li] there is talk about lambda-terms giving rise to (simple) functionals, which is
 related). As the displayed statement shows, the notion of "proof assignment" has a

 conceptually very clear and simple definition, by the device of considering the proof
 assignment as acting not just on formulas, but also on real proofs.

 As it turns out, we can (essentially) characterize the categories that come up as c.c.

 categories of proofs as free c.c. categories; here "free" is an algebraic notion like that
 in "free group". Let us call a functor F weakly full if, for any objects A and B in its
 domain, if there are no arrows from A to B, then there are no arrows from FA to FB

 (in the codomain category) either. Clearly, what is usually called a full functor is also
 weakly full. If I is any (small) set and A any category, then A' is the usual Cartesian

 power of A. A category with binary coproducts A + B and a terminal object 1 is said

 to have the disjunction property if whenever there is some arrow 1 -+ A + B, then
 there is either one of the form 1 -+ A, or one of the form 1 -+ B. The category of
 proofs of a theory T has the disjunction property just in case T has it in the usual
 sense.

 Finally, our main result can be expressed as the following abstract representation
 theorem.

 0.3.1. THEOREM. Let A be a countable free c.c. category.

 (a) There is a weakly full c.c. functor of the form A -- (Set')', with I a countable
 set.

 (b) If, in addition, A has the disjunction property, then there is a weakly full c.c.
 functor of the form A -+ Set'.

 To see the connection to the Lauchli theorem and its improvements stated above,
 note that an invariant element of the Z-set X is the same as an arrow 1 -+ X in Set',
 with 1 the terminal (one-element) Z-set.

 In ?4 we give an application of these results to the definability theory of type-
 theory that makes no reference to Z-sets or the like.

 ?1. Basic concepts. We explain the operations that occur in the categories used
 to represent deductive systems. As mentioned in the Introduction, it is remarkable
 that these operations are all very familiar and described in the literature (e.g. in

 [CWM] and also in ELS]). Operations in categories can be introduced in two ways:
 either via universal properties or as specified operations. Contrary to a prevailing
 view, the choice between these two modes of concept formation is not just a matter
 of taste. Both have their definite roles in the theory, and their relations should be
 stated clearly. The second author acknowledges his debt to G. M. Kelly for his
 enlightenment on this point; see also [BKP].
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 In the sequel, C will be a fixed category, and all objects and arrows coming into
 consideration will be in C. For objects A and B, C(A, B) will be the set of arrows
 from A to B; sets of the form C(A, B) are also called hom-sets, and sometimes

 denoted as Hom,(A, B).
 We first discuss at some length the categorical operation of product of two

 objects (also called binary product of objects), and start by presenting it via a
 universal property. A product diagram based on (A, B) is given by an additional
 object D and two arrows as in A p D - B, which are required to satisfy the well-

 known universal property: for any A 7 C - B, there is a unique arrow C -r D, such
 that the diagram

 f g

 A h B

 D

 commutes. This property of (p, q) may be stated by saying that we have an operation

 (1) < 'c = < , >: C(C,A) x C(C,B) -+ C(C,D)

 (giving h above as h = <f, g>), one for each object C, such that

 p o <fg> =f,
 (1') qo <fg> = g, [f: C - A, g: C- B, h: C - D],

 <ph, qh> = h,

 for any f, g and h as indicated. Note, in particular, that the last equality is a
 consequence of the uniqueness part in the universal property.

 Conversely, assuming the fixed data A p D -q B, and operations <, >c as in (1),
 one for each object C satisfying the three identities (1') we have that (p, q) is a product
 diagram; the point is that the third identity ensures the uniqueness of h in the above
 formulation of the universal property.

 C is said to have binary products if it has a product diagram based on (A, B) for
 any objects A and B. As with any categorical operation defined via a universal
 property, we have a corresponding notion of functor that preserves the given
 operation. In the case under discussion, a functor F between two categories pre-
 serves binary products if it maps any product diagram (based on (A, B)) to a prod-
 uct diagram (based on (FA, FB)).

 The most familiar example of a category with products is Set. It should be
 .mphasized that the objects A and B do not determine a unique product diagram
 A *-D -*B (indeed, in Set it is customary to take D = A x B = {(a, b): a E A,
 b E B} but even this does not determine D uniquely as there are different ways of
 coding ordered pairs as sets!). It is true, however, that the product diagram based on
 a fixed pair of objects is determined uniquely up to isomorphism. Thus, the usual
 terminology that speaks about a product operation is justified not entirely, but only

This content downloaded from 131.211.22.160 on Mon, 06 Mar 2017 12:15:26 UTC
All use subject to http://about.jstor.org/terms



 206 VICTOR HARNIK AND MICHAEL MAKKAI

 in essence; when we speak about "taking the product of A and B", what we really
 mean is that we choose one of the many product diagrams based on (A, B).

 We have an alternative way of formulating a categorical operation, in particular
 that of product, as a specified operation. This makes product an operation in a literal
 sense. The category C is said to have specified binary products if there is specified

 a function that associates with each pair (A, B) of objects a particular product dia-
 gram; let us denote the latter as usual:

 (2) A ( A X B B.
 IrA,B 7A,B

 Instead of saying that (2) is a product diagram we can formulate an equational
 presentation (of a category with specified products) by saying that with each pair of

 objects (A, B) we have a diagram as in (2) and an operation <, >A, B as in (1)
 satisfying (1'); that is,

 E3a. <fg> = f,

 E3b. ' fg> = g, [f: C - A, g: C -B, h: C -A x B],

 E3c. <K7h, 7r'h> = h,

 where the indices on a, r ' and < , > are omitted (they are recoverable from the
 ".sortings" of the variables given) and composition is indicated by juxtaposition.

 (The numbering follows [LS].)
 Obviously, once we have a category with specified binary products, then we have,

 by forgetting the additional structure, a category with binary products. Conversely,
 having a category with binary products, we may pass to a category with specified
 binary products, by making a simultaneous choice of product diagrams for all
 parameters involved; of course, this may involve a use of the axiom of choice. This
 latter step of specifying products (and other operations) is often done tacitly in
 category theoretical discussions.

 From a fundamental point of view, the concept defined via a universal property is
 preferable, simply because it involves less data. The point is that the category
 structure alone is enough to carry all the information needed in a category with
 binary products, or, for that matter, in many other structured categories. This
 circumstance is a basic point contributing to the conceptual economy of the
 categorical approach.

 The category Set, as well as other standard examples such as the category

 SetG of G-sets (with a group G), have binary products. In fact, they have naturally
 specified products as well (without the axiom of choice), although their specification
 involves such things as defining what ordered pairs should be (a thing a true
 category theorist finds distasteful).

 With any specified categorical operation comes a notion of morphism between
 categories having that specified operation: this is a functor that preserves the spec-
 ified operation (this is more than just preserving the given operation in the sense
 given above!). Thus, a morphism of categories C and D with specified binary
 products is a functor F: C -: D that takes the specified operation in the domain
 category into the specified operation in the codomain category:

 F(A x B) = (FA) x (FB), F(CA, B) = 19FA,FB, F(1A,B) = '9FAFB
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 PROOF THEORY AND ABSTRACT REALIZABILITY 207

 Notice that in this case we automatically have

 F<r,S>7AB = <Fr, FS>FAFB
 in the above notation.

 If F is a morphism with respect to a certain specified operation, then it is also a

 functor preserving that operation for the same categories with the specifications
 forgotten. The reason for this, in the case of the product operation, is that any

 (binary) product diagram is isomorphic to the corresponding specified product
 diagram, and any functor preserves isomorphism; hence, the image of any product
 diagram is isomorphic to a product diagram (the image of the specified prod-

 uct diagram), and thus it is a product diagram itself.
 The converse situation is more complicated. It is possible that we have, for

 categories C and D with specified binary products, a functor F: C -+ D preserving

 binary products (unspecified), but no morphism C -E D in the specified sense.
 Nevertheless, we can find, for any categories C and D with binary products,
 equivalent categories C' and D' with specified binary products so that there is an

 essentially (up to equivalence of functor-categories) bijective correspondence
 between the functors C -+ D preserving binary products, and the morphisms

 C' -+ D'. The discussion of the "essential equivalence" of the notions with and with-
 out specification would necessarily involve higher-dimensional category theory,

 and we will not say more about it; let us mention that [BKP] takes up this issue in
 a systematic manner.

 In this paper we will use mostly categories with specified operations, although we
 will make occasional references to the unspecified version.

 In the rest of this section, we enumerate the further categorical operations
 needed. Since these are quite standard (the reader may find them in [CWM]), we will
 be brief. In giving the equational presentations, we will use a numbering of identities
 to match that in [LS].

 A terminal object T is one for which there is exactly one arrow A -+ T for any
 object A. We use t for the specified terminal object, and !A for the unique A -+ t. In
 the equational presentation, we have the single identity

 E2. f=!A [f:A-+t].

 Coproducts are dual to products. A e D B is a coproduct diagram if for any A

 C g B, there is a unique h: D -* C such that f = hi and g = hj. In the (equational)
 specification of binary coproducts, we write A + B for D, KA,B for i, K'B for j, and

 [f A Bfor h. The equations are

 E6a. [fg]K =f,

 E6b. [f,g]K'=g, [f:.A C, g: B -C, h: A + B - C],

 E6c. [hK, hK'] = h.

 The initial object is dual to the terminal one. The equational specification of the
 initial object f is given by the single equation

 E5. 9 g=FLA [g:f-*A].
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 208 VICTOR HARNIK AND MICHAEL MAKKAI

 Given objects A and B, an exponential diagram based on (A, B) is one of the form

 q
 D E

 P/ h~~e

 A e!~B

 such that (p, q) is a product diagram, and for any

 S
 F C

 A B

 with (r, s) a product diagram, there is a unique pair (k, 1) of arrows k: C E and
 1: F -+ D such that the diagram

 F s yC

 A |I B {k

 D q E

 commutes. Using specified products (that is, r = 7cA C, s = 7A C, etc.), we must have
 that 1 = <KAC, k7r'A C>A B. and the commutativity condition just stated can be writ-
 ten as

 e7rA, C, k7r' > h. AKC,~I~,C>A,B =h

 In the equational presentation, we write BA for E, the already specified product

 (A x E, 7tAE, 7EtAE) for (Dp, q), 8AB for e, and h- for k given by h. We obtain two
 equations, the second ensuring the uniqueness of k (given h).

 E4a. <nKh7c'>=h [h:A x C-B],

 E4b. (e <7r, kzc'>) - = k Ek: C -+BA].

 A category (assumed to have binary products) is said to have exponentials if it has an
 exponential diagram based on any pair (A, B) of objects. A category has specified
 exponentials if, in addition to having a specified binary product structure, it has, for
 any pair (A, B) of objects, a specific exponential BA, and a specified evaluation arrow

 8AB: A x BA -+ B, with the properties given above. A functor preserves exponentials
 if it takes every exponential diagram into an exponential diagram; the meaning of a
 morphism preserving specified exponentials should be clear.

 This completes the listing of the operations. A category is called Cartesian if it has
 binary products and a terminal object, Cartesian closed if it is Cartesian and has
 exponentials, bicartesian if it is Cartesian and has binary coproducts and an initial
 object, bicartesian closed if it is bicartesian and Cartesian closed, and connectionally
 closed (c.c.) if it is Cartesian closed and has binary coproducts.
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 PROOF THEORY AND ABSTRACT REALIZABILITY 209

 To each of these kinds of structured category, there corresponds a kind of
 functor preserving the operations in question. We also have a corresponding notion
 of morphism for each kind of category with specified operations. We will talk about
 a connectionally closed (c.c.) functor in case of a functor preserving the connection-

 ally closed operations without specification, and a c.c. morphism for the case of
 specified operations.

 A partially ordered set (poset) (P, <) is a category in which the objects are the

 elements of P; for any x, y E P, there is at most one morphism x -+ y, and there is one
 precisely when x < y. The transitivity law ensures that composition is well-defined;
 reflexivity ensures the existence of the identity arrows. The antisymmetry law
 (x < y & y < x =- x = y) entails that the only isomorphisms are identities. Note
 that in a poset, product is the same as meet (greatest lower bound), coproduct as

 join (least upper bound), terminal object as maximum element, and initial object as
 minimum element. Exponentiation becomes what in lattice theory is called relative

 complement. As a consequence, when the above-mentioned types of categories are
 specialized to posets, familiar notions are obtained. For example, a bicartesian poset
 is the same as a lattice (with 0 and 1), and a bicartesian closed poset is the same as a

 Heyting algebra. Let us also note that, in the case of a poset, because only trivial
 isomorphisms exist, the difference between the concepts with and without specified
 operations disappears. Also, if (e.g.) C is a c.c. category with specified operations and
 H is a c.c. poset, a c.c. functor from C to H is automatically a c.c. morphism.

 Many naturally occurring categories fall into one or more of the classes defined
 above. The most important one is Set, the category of all small sets and functions;
 Set is bicartesian closed. A reader who has not seen this material before should

 contemplate the meaning of the operations in Set. Let us point out another example,
 one that plays a leading role in the main result of the paper. With Z standing for the
 additive group of the integers (which is, like any group, a (one-object) category), we
 consider the category Set' of all functors Z -+ Set, or, in a more familiar wording,
 the category of all Z-sets, with equivariant maps as arrows. Put still another way,
 the objects of Set' are sets with a distinguished permutation, and the arrows
 are mappings between the sets respecting the specified permutations. Set' is a
 bicartesian closed category; in fact it is a topos (see [J]). Moreover, the forgetful
 functor Set' -* Set, sending each Z-set to its underlying set, is a bicartesian closed
 functor (in fact, it is logical, in the sense of topos theory); we leave the verification of
 this fact to the reader. This fact, of course, shows that the bicartesian closed structure
 of Set' is closely related to that of Set.

 ?2. The category of proofs. Let X be a language suitable for propositional logic;
 that is, a set of atomic propositions (briefly, atoms). We will adopt the framework of
 negationless propositional logic; negation will be brought in on the extralogical
 level. A formula is built in the usual way out of atoms, the symbol t ("true", used
 as an atom) and the binary connective A, v, -+. Formulas are denoted by letters
 A, B, C,....

 The basic ingredient of the proof theory as considered here, and in [LS], is the
 formal concept of entailment; this replaces the notion of Gentzen sequent. An
 entailment is a pair of formulas, written in the form A =- B, in reference to the usual
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 notation of Gentzen sequents; A is the premise and B is the consequent of the
 entailment A = B. In other words, we are using a formalism of Gentzen sequents
 with exactly one formula on both sides of the symbol a. If need be, we refer to
 entailments by lower case Greek letters.

 A theory T (in the language Y) is a (n arbitrary) set of entailments (in f). We
 have rules of inference with zero, one, or two hypotheses and one conclusion; the
 rules with no hypothesis are also called axiom schemes. The rules are grouped
 into logical and extralogical ones. The list of the rules follows; the symbols to the
 right of the rules will be used later.

 I. LOGICAL RULES.

 (TAUT) A A 'A

 A=AB B=OC

 (CUT) A = :C 0A,B.C

 (TRUE) A t !A

 (ALEFTI) AAB =A 9AB

 (ALEFT2) A A B B 7AB

 (ARIGHT) C A AB < B >AB

 (vRIGHT1) A=>AvB KAB

 (vRIGHT2) BKAVB IAB

 (v LEFT) A vB C [ 'I CAB

 (CLEFT) AA (A -B) =B -A,B

 A A C B B

 (W~RIGHT) C =>A -B ()A,B,C

 II. EXTRALOGICAL RULES.

 (T) provided - E T.

 The calculus axiomatized by the logical rules alone is called the minimal
 propositional calculus.

This content downloaded from 131.211.22.160 on Mon, 06 Mar 2017 12:15:26 UTC
All use subject to http://about.jstor.org/terms



 PROOF THEORY AND ABSTRACT REALIZABILITY 211

 The given theory' T enters through the extralogical axiom scheme (T). To re-
 cover full intuitionistic propositional logic with negation, we use an additional
 atom f ("false"), interpret - A as A -+ f as usual, and add all entailments f = A to
 the given theory T.

 We have the traditional notion of deduction. A deduction is a finite tree with
 additional data; the nodes are occurrences of entailments; the leaves (nodes with-
 out successors) are instances of the axiom schemes, the axiom scheme applying
 attached as a justification label (the same formula could be an instance of two dis-
 tinct axiom schemes); every other node has one or two successors, and, if it has two,
 the order of the two successors is supplied as additional data; every node p is the
 conclusion of an instance of a rule of inference, given as a justification label on p,
 in which the hypothesis is (hypotheses are) the successors) of p (in the given order
 as first and second hypothesis, in the case of two hypotheses). The deduction is a
 deduction of the entailment at its root.

 Let us write f: A => B to indicate that f is a deduction of A => B (in T; T is
 suppressed in this notation).

 It is easy to see that the proof-system just introduced, with f and negation treated
 as explained, is equivalent with respect to provability to the familiar axiomatizations
 of intuitionistic propositional logic. Nevertheless, the system, which we would like
 to call Lambek's axiomatization of intuitionistic logic, has certain differences in
 comparison to sequent calculus, or to natural deduction. In [M2], a comparison of
 these systems and their extensions to predicate logic will be attempted.

 To form the desired category of proofs, certain deductions that are considered
 only inessentially different will be identified with each other; however, even before
 that identification, we can develop an algebraic notational system for deductions,
 eventually used for identifying a categorical structure.

 The idea of the notation is to consider the set of all deductions as a many-sorted
 algebra. The sorts of the underlying similarity type, denoted by -9, are the en-
 tailments themselves. The sorted operation symbols of 9, are the symbols listed
 to the right of the logical rules above. The symbols mentioned with the extralogi-
 cal axiom scheme are individual constants, additional to the language -9, with
 appropriate sortings, used as generators of the algebra of proofs of the similarity
 type _9. Let us denote the language -9 with all the individual constants Xr (z E T)
 (the generators) adjoined by _9(T).

 For example, 1A is an (individual) constant (nullary operation) of (value-)sort
 A = A, and it denotes the deduction consisting of the single node A => A justi-
 fied as an application of (TAUT) (it could possibly be justified as an application of
 (T) if A A happened to belong to T; with that justification, we would have a
 different deduction).

 Xr is a constant of sort -c (z E T).
 0A,B,C, so denoted to suggest composition, is a binary operation, with first

 and second argument sorts A -: B and B -: C, respectively, and with value-sort
 A => C:

 OA,BC: (A = B) x (B = C) -(A = C).
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 Moreover, if f: A -: B, g: B => C and h: A = C is the deduction pictured as

 A f B B => C (CUT),

 we write 'A,B,C(f, g), or, more simply, g a f, or even gf, for h.
 The reader will now easily supply the sorting of the rest of the operation symbols,

 and their use in denoting deductions.

 Note that every deduction will have precisely one notation as a closed (variable
 free) term in the language 94(T), and every such term denotes a well-formed
 deduction. In short, the deductions are exactly the closed terms of _9(T).

 We may also say that the deductions in T form the absolutely free algebra of
 similarity type -9 with generators dr (z E T); "absolutely free" because no identities
 are required to hold.

 Next, we consider certain identities over the language -9. The first three are the
 following:

 Ela. fl = f,

 Elb. lg = g, [f:A B, g: B => C, h: C =D],

 Elc. (hg)f = h(gf).

 In Ela, we abbreviated the constant 1A of sort A => A by 1; similarly in Elb; also, all
 uses of the "composition" symbols a, with various subscripts, are suppressed in favor
 of juxtaposition. The rest of the identities are E2a to E6c of ?1, with E5 taken out,
 and with the following modifications. Whenever a variable was meant to be an
 arrow E -+ F before, it is now meant as a variable of sort E = F; the symbols x
 and + should now be replaced by A and v; and each BA should be replaced by
 A -+ B (implication). The symbols A, B, C and D, previously ranging over the objects
 of a category, now range over the formulas of Y. Let us call the identities in the
 groups E1-E4 and E6 the c.c. identities.

 Let us impose the c.c. identities on the deductions; in other words, let us consider
 the free algebra satisfying the c.c. identities of type -9, freely generated by the
 generators dr (z e T), and let us denote it by Fy(T). The elements of the algebra
 EFy(T) are our final concept of deduction. Fy(T) is a many-sorted algebra, with
 sorts the entailments of Y; its elements are equivalence classes [t] of closed terms t
 of the language _9(T), under the congruence relation generated by all instances of
 the c.c. identities with closed terms of -9(T) filled in for the variables.

 For example, the associativity identity Elc means that we do not distinguish
 between the following two deductions:

 (CUT) B h
 (CUT) A=>C C=*D

 A =>D
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 and

 B C (CUT)
 A => B B=D (CUT)

 A => D

 E4a identifies any deduction of the form

 AA A C=B

 with the following roundabout deduction of the same entailment:

 A A C-B (-RIGHT)
 ______ (A LEFT2)AAC=C C =>A --+B(-RGT

 (A LEFTI) ACA-B (CUT)
 (A RIGHT) A A C A AAAA(A-A4B) B --BEFT

 A A C AA(A B) A (A B) (CUT)
 A A CO=>B

 The identifications of proofs effected by the c.c. identities are closely related to
 ones considered in the literature in the context of the Gentzen sequent calculus, and
 natural deduction. However, the precise connections are not easy to state since
 the Lambek axiomatization of intuitionistic logic differs slightly from either the
 Gentzen sequent calculus, or natural deduction. In [M2], a comparison will be
 attempted.

 The idea of formulas as sorts (types) and proofs as terms appears in proof theory,
 independently of categories. In 1969, in a privately circulated manuscript (which
 later became the paper [Ho]), W. A. Howard regards formulas as types, and denotes
 natural deduction proofs by terms that at the same time denote "constructions" or
 functionals of appropriate types. Howard's work was independent of Lambek's. In
 [Ho], the similarity of Howard's and Liuchli's [La] frameworks is noted. In [La],
 using the notation of the lambda calculus, Lauchli implicitly associates terms
 denoting functionals with proofs in a Hilbert-type calculus for intuitionistic logic.

 Let us now turn to the rather straightforward step of construing algebras over the
 language -9 as c.c. categories.

 Let C be any algebra of type -9 satisfying the c.c. identities. We consider the
 category, also denoted by C, whose objects are the formulas of Y and whose arrows
 A -+ B are the elements of the algebra of sort A = B. Furthermore, the identity
 arrows and composition are given by the operations 1A and ABC; the identities El
 say precisely that we do have a category in this way. Moreover, the presence of the
 rest of the operations of -9 and the rest of the identities means, according to ?1,
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 precisely that C is a c.c. category with specified operations: the formulas A A B,
 A v B and A -+ B are the specified product A x B, coproduct A + B, and expo-
 nential BA, respectively.

 Applying the last paragraph to the free algebra F?(T), we now have that the
 (suitably identified) deductions in T form a c.c. category with specified operations.

 Since the algebra F(T) of deductions is a free algebra, it is to be expected that
 the corresponding c.c. category with specified operations, also named F(T), is free
 in a suitable sense.

 2.1. DEFINITION. Let Y be an arbitrary set. The c.c. category (with specified

 operations) freely generated by Y as a set of objects is the c.c. category EF defined, up
 to isomorphism, by the following universal mapping property:

 (a) Each P E Y gives rise to an object, also denoted P, of _; and whenever D is a
 c.c. category with specified operations, with an object P assigned to each P E , then
 there is a unique c.c. morphism F: F -+ D for which F(P) = P for all P E Y.

 This definition parallels that of "free group", and those of a number of other free

 objects in algebra. The fact that any two c.c. categories answering the description of

 the definition are indeed isomorphic to each other is seen immediately, just as in the

 case of groups. As for the existence of EF, the answer is already provided: with Y

 understood as a set of propositional atoms and T the empty set of (extralogical)

 axioms, the c.c. category A(4) constructed above serves as F. Indeed, the
 required c.c. morphism F, in the situation of the definition, is constructed by an
 obvious recursion on the complexity of the formulas (as objects) and -9-terms (as
 "pre-morphisms"); it is clear that F is uniquely determined.

 2.2. DEFINITION. Suppose B is a c.c. category with specified operations, and X is

 a set with two objects d(4) ("domain of d") and c(4) ("codomain of d") of B assigned
 to each 4 E X. We say that the c.c. category C with specified operations is obtained
 from B by adjoining the indeterminate arrows in X if, with some c.c. morphism F:

 B -+ C, and arrows (also denoted by) 4: F(d(4)) -+ F(c(4)) in C, one for each 4 E X,
 we have the following universal mapping property:

 (/3) Whenever D is a c.c. category with specified operations, G: B -+ D a c.c.

 morphism, and 4: G(d(4)) -+ G(c(4)) for each c E X, then there is a unique c.c.
 morphism H: C D such that G = H a F and 4 = H(4) for all 4 E X.

 Again, the c.c. category obtained by adjoining indeterminate arrows in X to a
 given c.c. category B is determined up to isomorphism, as is easily seen; let us denote
 it by B(X). B(X) always exists; instead of proving this, let us point out that F(T)

 constructed before serves as &F(X), with X = -c,: e E T}. Indeed, we have the
 canonical c.c. morphism F: F -+ Fy(T) which is the identity on objects, and for
 which F([t]) = [t]'; here [t] is the arrow defined by t in EF, and [t]' is the one de-

 fined by t in 3F(T). Moreover, it is easily seen that F satisfies the universal property
 of the definition. The construction of B(X) in general is quite similar to that of

 Y(T); in particular, the objects of B(X) can be taken to be the same as those of
 B, and the canonical morphism F: B -+ B(X) can be taken to be the identity func-
 tion on objects.

 We have described two "free" constructions, each via an appropriate universal
 property; one with indeterminate objects, the other with indeterminate arrows.
 These constructions are analogous to the ones given in ??I.4 and 1.5 of [LS], given
 there for artesian closed categories instead of c.c. ones.
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 Let us call a c.c. category with specified operations free if it is obtained by the two
 free constructions performed one after the other. That is to say, C is a free c.c.

 category if it is of the form Y,(X), with Y an arbitrary set (of objects) and X a set of
 indeterminate arrows. We have seen that the c.c. category of proofs, based on any
 theory T in minimal propositional logic, is a free c.c. category.

 REMARK (concerning the effect of taking the intuitionistic, rather than the mini-
 mal, as the underlying propositional logic). As mentioned in the Introduction,
 Lambek considered the category of proofs of intuitionistic, rather than minimal,
 propositional logic. The construction, which differs from the one described above in
 its treatment of the false atom f, is described in [LS, Part I, ??1-4, 8]. The differ-
 ence is that the entailments f = A are added to the logical rules, and the identities

 E5. g=LA [g:f= A]

 are added to the c.c. identities E1-4 and E6. Let F* denote the resulting category
 of proofs (for pure intuitionistic logic). The effect of E5 is that f is an initial object
 of Y*. Thus, F*, the category of proofs of intuitionistic logic, is a bicartesian
 closed category. The addition of E5 to the identities has the effect that we identify
 more arrows than before. This means that when E is compared with the c.c. cate-
 gory Fy(T), where T is the theory consisting of the entailments f = A as extra-
 logical axioms, the two have the same objects but the former has fewer arrows
 (the former is a surjective image of the latter). The difference is well exemplified by
 Proposition 8.3 in Part I of [LS], which states that in a bicartesian closed category
 there is at most one arrow A -*0 for any given object A (O is the initial object). As
 a consequence, for any formula A, if the negation - A of A (i.e. the formula A -+ f)
 is provable in intuitionistic logic, then all its proofs should be regarded, accord-
 ing to FY, as essentially the same. In particular, no matter how many different
 proofs a formula A might have, they all lead to the same proof of its double neg-
 ation - - A. This is counter-intuitive, and provides a reason to prefer our choice
 of minimal logic as the basic calculus. Another, no less important, reason is that
 Lauchli's theorem is not true in the bicartesian closed context (cf. ?3, below). We
 conclude our digressive remark, and return to free c.c. categories.

 The concept of projectivity is a well-known one in algebra, and it is meaningful in
 a general category. We apply the general concept in the category of c.c. categories
 with specified operations and c.c. morphisms. Let us call, in a natural way, a functor
 G: D -+ E surjective if it is surjective on objects as well as full (the latter is surjectivity
 on each separate hom-set).

 2.3. DEFINITION. A c.c. category C with specified operations is projective if for
 any surjective c.c. morphism G: D -+ E, and any c.c. morphism H: C -+ E, there is
 at least one c.c. morphism J: C -+ D such that H = G a J: the diagram

 C

 J1H
 D E

 G

 commutes.
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 The following lemma is analogous to the well-known fact that a free module is
 projective.

 2.4. LEMMA. Any free c.c. category is projective.
 PROOF. In this proof, all categories and functors are c.c.; thus, the c.c. character

 will not be mentioned.

 Let our free c.c. category be C; C = F(X); let B = F., and let F be the canonical
 functor F: B C.

 Let G: D E be surjective, and let H: C -+ E. We will construct the diagram

 B F C

 JIX
 D - ~ E

 G

 Consider HF(P) E E for each P E Y. By the surjectivity of G on objects, there is
 P E D such that G(P) = HF(P). By the universal property of B (see 2.1), there is
 I: B -+ D such that I(P) = P for all P E Y. Since the composite functors GI and
 HF agree on the generators P E Y, by the uniqueness part of the universal prop-
 erty of B we have that GI = HF.

 Next, consider the arrow H(4): HF(d(4)) HF(c(4)); that is,

 H(4): GI(d(4)) GI(c(4))

 for each 4 e X. Since G is full, there is 4: I(d(4)) -+ I(c(4)) such that G(4) = H(4)
 for all 4 e X. By the universal property of C (see 2.2), there is J: C -+ D such that
 I = JF and J(4) = 4 for all 4 e X. We have that HF = GI = GJF, and also that
 GJ(4) = H(4) for all 4 e X. Hence, by the uniqueness part of the universal prop-
 erty of C, H = GJ as required. C12.4

 ?3. Lauchli's completeness theorem. For any category C, and objects A and B in
 it, C(A, B) denotes the set of all arrows A -+ B. Part (a) of 0.3.1 ("extended Lauchli
 completeness") can be equivalently stated as

 3.1. THEOREM. Let C be a countable free connectionally closed category, and let
 A, B e Ob(C) be such that C(A, B) = 0. Then there is a connectionally closed functor
 F: C -+ Set" such that Setz(FA, FB) = 0.

 The proof will be done in several steps, each involving further definitions and
 auxiliary statements, some of which have independent interest. Until the end of the
 proof, C and the objects A and B are taken to be as in the assumption of 3.1; in
 particular, C(A, B) = 0.

 First step: the poset reflection. When trying to build a functor as desired by the
 theorem, we will naturally be concerned with the following structural aspect of the
 given category C: which ordered pairs of objects are connected with arrows and
 which are not. We can associate with any category C a poset Po(C), called the poset
 reflection of C, that is a simplified version of C, containing the information on the
 said structural aspect of C. The reader is reminded that each poset can be regarded
 as a category; see ?1.
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 The poset reflection is obtained by first considering the preorder reflection, which
 is the preorder with elements the objects of C, and for which X < Yjust in case there
 is an arrow X -+ Y in C. The poset reflection is then the poset obtained from the
 preorder reflection by identifying any X and Y for which both X < Y and Y < X.
 We have an obvious surjective functor y: C -+ Po(C) for which C(X, Y) = 0 iff
 Po(C)(yX, yY) = 0; we refer to y as the poset reflection functor (of C).

 It is an obvious and important observation that if C is c.c., then so is Po(C), and y
 is a c.c. functor. Notice that this assertion, although it is seen immediately by
 inspecting the definitions involved, nevertheless sensitively depends on the par-
 ticulars of the definition; e.g., pullbacks in C are not necessarily preserved by y.
 At the same time, the same assertion does hold for variants such as artesian closed
 or bicartesian closed categories.

 Let us call a c.c. poset an almost Heyting (aH) algebra; an aH algebra is a Heyting
 algebra "possibly without 0". We may summarize the first step by saying that we
 have constructed a c.c. functor y: C -+ Po(C) from the given category C into an aH
 algebra, preserving the emptiness of the hom-set C(A, B); Po(C)(yA, yB) = 0, that
 is, not yA < yB.

 Our overall plan is to find a c.c. functor, preserving the emptiness of C(A, B), from
 C to the poset reflection of Set', and then, using the projectivity of C, lift it to a
 functor into Set' itself.

 We could have considered, instead of c.c. categories, bicartesian closed categories
 in this subsection. When we do so, we get a Heyting algebra as the poset reflection
 of a bicartesian closed category. If the bicartesian closed category taken is the
 category of proofs of a theory, for the poset reflection we get the Lindenbaum-
 Tarski algebra of the theory; in intuitionistic logic, this is a Heyting algebra instead
 of a Boolean algebra as in classical logic. Of course, the Lindenbaum-Tarski alge-
 bra may be described directly as a poset whose underlying set consists of equiva-
 lence classes of formulas under the equivalence relation for which A and B are
 equivalent iff A +-+ B is provable.

 Second step: building the canonical Kripke model. The Kripke completeness
 theorem for propositional logic has an elegant algebraic form, which we now explain
 for the case of aH-algebras (we could do this just as well for Heyting algebras). In this
 form, the theorem states the existence of an embedding of an arbitrary aH algebra
 H into another, canonically constructed aH algebra of a special type. The con-
 struction is due, in fact in a much more general form concerning predicate logic, to
 A. Joyal; see Theorem 6.3.5 in [MR]. We will comment on the relations of Joyal's
 form to the usual form of the Kripke theorem.

 Let 2 denote (also) tMe two-element poset {0, 1} (with 0 < 1); 2 is an aH algebra
 (of course, 2 is even a Boolean algebra).

 Let H be an aH algebra. Let I = [H, 2] be the set of all almost lattice (aL)
 homomorphisms i: H -+ 2, i.e. the order-preserving maps i: H -+ 2 that also preserve
 binary meets, the maximal element, and binary joins, but not necessarily implica-
 tion. I is a poset with i < j iff i(x) < j(x) for all x e H.

 By identifying i e I with the set F = {x e H: i(x) = 1}, we see that the elements of
 I are the same as the possibly improper prime filters of H, i.e. the filters F for which
 x v y e F implies that either x e F or y e F. The ordering i < j becomes set-theoretic
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 containment F c G. In particular, I has a maximal element, the identically-I func-
 tion, or the improper filter F = H; this fact, which will turn out to be important,
 would not be true if we dealt with Heyting algebras and asked for all i E I to pre-
 serve the least element as well.

 Now, for a moment taking an arbitrary poset I (although we will need the
 construction only for the I introduced in the previous paragraph), we consider
 the poset 2' of all order-preserving maps p: I -+ 2, with the pointwise ordering (2'
 is essentially the same as the poset of all upward closed subsets of I, with set-
 theoretic containment as ordering). 2' is a Heyting algebra; the operations of meet
 and join are computed pointwise, and the Heyting implication (= exponential)
 (P _+ * =def *f4 is given by

 (1) ((p -+ I)(i) = 1 : Vj ? i.[(p(j) = 1 implies /(j) = 1]

 (we leave this, and other, easy-to-prove assertions to the reader to verify).
 Returning to I as obtained from H as above, we note that we have the mapping

 e: H -+ 2' defined by x v-4 [i 4 i(x)] (that is, e(x)(i) = i(x)), which is called the
 "evaluation mapping". Clearly e is an aL homomorphism. We claim that it is an aH
 homomorphism, meaning that it is a c.c. functor, i.e., it also preserves Heyting
 implications; that is, for any x, y E H, e(x -+ y) = e(x) -+ e(y).

 According to the meanings of the terms involved (see (1)), this means that, for
 any i E I,

 Vj ? i.[j(x) = 1 implies j(y) = 1] : i(x -+ y) = 1.

 If i(x -+ y) = 1, then, for any j ? i, j(x -+ y) = 1; since j(x) A j(x -+ y) < j(y), the
 phrase in brackets on the left of : follows; this shows the right-to-left implication.

 Conversely, by contraposition, let us assume i(x -+ y) $ 1. Let F = {z E H: i(z) = I},
 the filter corresponding to i, and consider the filter generated by F and x. The latter
 is F' = t(F( A )x), the upward closure of the set F( A )x = {z A x: z E F}. We have
 that y 0 F'; otherwise we would have some z E F with z A x < y, implying that
 z < x - y, from which x -+ y e F would follow, in contradiction to the assump-
 tion i(x -+ y) $ 1. Now we have the prime filter existence theorem: for any filter

 F' and element y 0 F', there exists a prime filter P such that F' c P and y 0 P (in
 fact, any filter P maximal among the ones containing F' and not containing y is a
 prime filter). Let j: H -+2 be the aL homomorphism corresponding to P; we have
 j ? i and j(x) = 1, but j(y) $ 1, as required.

 Another application of the prime filter existence theorem shows (as is well
 known) that e is one-to-one; it easily follows that e(x) < e(y) if and only if x < y.

 Let us summarize what we have just shown in a proposition.
 3.2. PROPOSITION (A. Joyal). For any almost Heyting algebra H, the canonical

 evaluation mapping e: H -+ 2[H, 2] is an almost Heyting isomorphic embedding.
 l 3.2

 In the last proposition, we could just as well talk about Heyting algebras and
 Heyting embeddings.

 This concludes the second step of the proof. With H= Po(C), we now have
 the second functor e: H -+ 21, and the composite e o y: C 2' still preserves the
 emptiness of C(A, B).

This content downloaded from 131.211.22.160 on Mon, 06 Mar 2017 12:15:26 UTC
All use subject to http://about.jstor.org/terms



 PROOF THEORY AND ABSTRACT REALIZABILITY 219

 Recall that a Kripke model for a given language Y is usually defined as a pair
 (I, 1[), where I is a poset and [- is a relation between elements of I and formulas of Y
 satisfying certain inductive conditions. Let H be the Lindenbaum-Tarski algebra of
 T (see above). Any Heyting homomorphism of the form e: H -+2' gives rise to a
 Kripke model of T: define i I[A to mean e([A])(i) = 1 (here [A] is the equivalence
 class (an element of H) containing A). For instance, the relation (1) concerning the
 meaning of implication in 2' gives us the clause for implication in Kripke models:

 il[hA-+B iff forallj2i,ifj kA,then]j [B.

 Reflection shows that a Kripke model of T is in fact the same as a Heyting
 homomorphism of the form e: H -+ 2', with H as before. It is then immediately seen
 that 3.2 (formulated for Heyting algebras rather than aH algebras) is a form of
 Kripke's completeness theorem.

 Third step: choosing a rooted Kripke model. The poset I = [H, 2] does not have,
 in general, a least element, a fact that will turn out to be a hindrance. We now correct
 this.

 Note that C(X, Y) = 0 iff not yX < y Y iff there is il e I such that i1(yX) = 1 and
 i1(y Y) = 0. Apply this to X = A and Y = B for which we have that C(A, B) = 0; let
 il be chosen accordingly. Pick any io < il, and consider IO = {i E I: io < i}. We
 would like to substitute 2'0 for 2'. There is an obvious map P: 2' -+ 2'0 defined by
 09 = 9 I IO (p restricted to IO). Clearly, P preserves meets, joins and 1; it is not hard
 to see that it also preserves -+ as well (the reason is that IO is upward closed in I; we
 will discuss this point shortly in a broader context).

 It follows that we have a third c.c. functor P: 2' -+ 2'0. Finally, the composite
 functor Fey: C -+ 210 still preserves the emptiness of C(A, B), since the element il is
 included in the set IO.

 Preparations for the remaining steps. The next two steps will consist in gradually
 "preparing" the Kripke model We: H -+ 210 just constructed. We now consider two
 arbitrary posets N and I, and an order-preserving mapping f: N -+ I. f induces the
 order-preserving mapping

 f*:21+2N, pI- (P of

 It is clear that f * is a lattice homomorphism; Let Zu's see what it means for J to be a
 morphism of Heyting algebras, that is, to preserve Heyting implication. Consulting
 the formula (1) above, and applying it in both 2' and 2>, we see that f; preserves the
 implication p -+ f in 2' just in case, for all p E N,

 (2) Vj ? f(p).[ p(j) = 1 => i/(j) = 1] : Vq ? p.[(p(fq) = 1 = /(fq) = 1].

 It is clear that the left-to-right implication is automatic.
 Fourth step: constructing a countable rooted Kripke model. We want to find a

 countable subset J of IO containing the minimal element of IO such that, with
 k: J -+ IO the inclusion, the composite k*Pe: H -+ 2J is still an aH homomorphism,
 and so that the further composite k*qey preserves the emptiness of C(A, B).

 3.3. PROPOSITION. Let e: H -*2' be an aH algebra homomorphism of a countable
 aH algebra H into 2', with I a poset. Assume a, b E H are such that not e(a) < e(b).
 Then there is a countable subposet J of I such that, for the inclusion k: J -+ I, the
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 induced mapping k*e: H -+ 2' is again an aH algebra homomorphism, and still not
 k*e(a) < k*e(b). In fact, J can in addition be chosen to contain any given countable
 subset of I.

 PROOF. The proof is a downward Lbwenheim-Skolem-style argument. For any

 J c I, and with the inclusion k: J -+ I, the condition (2) for k*e to preserve
 becomes, by passing to the contrapositive, the following:

 (*) For any j E J and P, IF E Im(e) (with the elements of Im(e) c 2' considered as
 upward closed subsets of I),

 ]x e I.[x ? j & x eC- & x 0 IF] = 31 e J.[l ? j & 1 e 'P & 1

 Fulfilling condition (*) requires throwing into J appropriate witnesses 1 for
 instances of the statement appearing on the left side of the implication in (*), each

 such statement depending on elements of J already available. Pick il e I such that
 e(a)(i1) = 1 and e(b)(i1) = 0, and construct the countable J c I containing il and any
 prescribed subset of I so that J satisfies (*). L 3.3

 Apply 3.3 to I0 of the third step as I, and d1e as e; we obtain a fourth c.c. functor
 k*: 2'0 > 2J so that the composite k*Pey: C -+ 2J still preserves the emptiness of
 C(A, B).

 Preparation for the fifth step: calculating the poset reflection of Set'. Think of
 7-sets as sets with distinguished permutations; let X and Y be 7-sets with distin-

 guished permutations a and p. We want to know when Set'(X, Y) # 0, i.e., when
 there is a function g: X -+ Y that is equivariant in the sense that g(cx) = pg(x).
 This equivariance condition implies that for all n E X, if &'x = x, then p'g(x) =
 g(x) as well. Thus, a necessary condition for Set1(X, Y) # 0 is the following:

 (**) For all n E X, if there is x E X with Unx = x, then there is also y E Y with
 pny = y.

 3.4. Claim. Condition (**) is also sufficient for Set1(X, Y) # 0.
 Proof. For x E X, let the order of x be the least positive integer n such that

 anx = x if there is such n, and 0 otherwise. If o(x) = {ax: k Ec Z}, the orbit of x,
 then the order of x is the cardinality of o(x) when o(x) is finite, and 0 if o(x) is in-
 finite. The orbits of elements of X are each closed under the action of a, and they

 form a partition of X; thus it suffices to define g on each orbit separately. Let
 x E X have order n; if (**) holds, then there is y E Y with pny = y; let g(x) = y

 and extend this to o(x) by g(rkx) = pky. The way y was chosen ensures that g
 is well-defined. E 3.4
 Letting N be the set of all nonnegative integers, define, for any Z-set X,

 (3) 6(X) = 'e N: nx = x for some x e X}.

 Claim 3.4 can be restated as saying that Set'(X, Y) # 0 iff 6(X) c 6(Y).
 Let us consider N as the poset with ordering relation the divisibility relation l; 1 is

 the least element of (N, I) and 0 is its greatest. Obviously, each 6(X) is an upward
 closed subset of (N, 1).

 For any n E N, let Xn be the set of integers modulo n (hence, for n = 0, Xn is Z),
 with the distinguished permutation a on X, defined as adding 1 mod n; then X,
 consists of a single orbit, and it is of size n if n # 0, infinite otherwise. Now, if P is any
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 upward closed subset of (N, 1), then for X the disjoint union of the Xn with n E P we
 clearly have that 6(X) = P.

 We have shown that the poset reflection of Set' is the set of upward closed
 subsets of (N, i) ordered by inclusion.

 The upward closed subsets of (N, I) can be identified, via their characteristic

 functions, with the elements of 2N, the set of order-preserving maps from (N, i) into 2.
 We can sum this up in the following proposition.

 3.5. PROPOSITION. The poset reflection of Set' is isomorphic to 2N via the poset
 reflection functor 6 defined in (3). [ 3.5

 Fifth step: a quite surjective f: N -+ J. With J constructed in the fourth step,
 and the poset N obtained just now, our goal is to construct an aH embedding
 f*: 2J -+ 2N, using a suitable order-preserving function f: N -+ J. To see what f
 should be like, let us return to condition (2) for f* being an aH homomorphism. Let

 us call an order-preserving mapping f: N -+ J between two arbitrary posets N and
 J upward closed if for all p E N, f maps {q E N: q ? p} onto {i E J: i ? f(p)}, and
 quite surjective if it is upward closed and onto J. Now, it is immediate that any
 upward closed f satisfies (2) at any p E N. Furthermore, it is clear that if f is onto,
 then f * is one-to-one. We have proved.

 3.6. PROPOSITION. If f: N -+ J is a quite surjective order-preserving mapping of
 posets, then f *: 2J -+ 2N is an aH embedding. D 3.6

 The remarkable property of the poset (N, I) that is the key to the whole proof is
 that for any countable poset J with a least and a greatest element, there is a quite

 surjective order-preserving mapping f: N -+ J. We show something more general, in
 view of a use this has in [Mi].

 For arbitrary categories N and J, and for a functor f: N -+ J, we say that f is
 upward closed if for any p e Ob(N) and any arrow i: f(p) > j in J, there is 0: p -* q in
 N such that f(O) = i (and hence f(q) = j). f is called quite surjective if it is closed
 upward, and surjective on the objects.

 In the next proposition, N is the above poset (N, I). A weak initial object in a
 category is one from which there is at least one arrow to every object.

 3.7. PROPOSITION. If J is a countable category with a weak initial object and a

 terminal object, then there is a quite surjective functor f: N -+ J taking the least
 (greatest) element of N to a weak initial (terminal) object of J.

 PROOF. Note that our N is a countable poset satisfying the following three

 conditions:

 (a) N has a least and a greatest element (the latter is the number 0).
 (b) For every p e N - {O} the set {q e N: q < p} is finite.
 (c) For any finite subset A c N - {0} and any a e A, there is b e N - {0} such

 that b > a, but b is incomparable with all c e A for which - (c < a).
 We define f by finite approximations, using finite functors g with a finite domain

 contained in N, and with codomain J, such that g maps the least (greatest) ele-
 ment of N to a weak initial (terminal) object of J, and such that dom(g) - {0} is
 closed downward. Given any such g, any p e dom(g) - {0}, and j e J with an
 arrow i: f(p) -+ j, we can choose q > p such that q is not comparable with any
 element in dom(g) - {0} except those < p, and in fact so that q is minimal with
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 this property, and define g' extending g by setting g'(q) = j, g'(p < q) = I, and
 g'(r < q) = io g(r < p) for all r E dom(g) with r < p.

 In this way, g' is in fact a functor, and one instance of the upward closedness

 condition is satisfied. However, dom(g') - {O} may fail to be closed downward, in
 which case we have to extend g' further.

 If r is in the downward closure P of dom(g') - {O} but not in dom(g') itself,

 then it must satisfy r < q, not r < p and r is incomparable with the elements of
 dom(g) - {O} that are not <p (for, if s is an element of dom(g) - {O} - {u: u < p}
 then r ? s would make q comparable with s and r < s would make r an element

 of dom(g')). Define h: P -+ dom(g') - {O}, an order-preserving map, by h(s) = s
 for s e dom(g') - {O}, and by h(r) = p for r e P - dom(g'). Because of what we

 said about elements r of P - dom(g'), h is an order-preserving retraction. Let

 g": P -+ J be defined as the composite g" = g' o h, and extend g" by adding
 g"(O) = g'(O). g" extends g', and thus g as well; also, g" is a finite functor into J

 with dom(g") - {O} closed downward, extending g.
 The other task we have to be able to perform is to extend a given g to some g'

 mapping an arbitrarily given p e N to some object of I; but, since dom(g) - {O} is

 closed downward, if p 0 dom(g), we can define g' to map p to the terminal object of I
 already in the range of g; the definition of g' on the arrows involved becomes
 uniquely determined since only instances of the form g'(r < p), r e dom(g), are there
 to be considered. (This last argument is the sole point where we need the terminal

 object of I.)
 It is clear that, with appropriate bookkeeping, we can piece together g's to get f:

 N -+ J so that f is upward closed. Since the construction also makes sure that the
 minimal element of N is mapped to a weak initial object, the surjectivity of f on
 objects is a consequence of the upward closure. 0 3.7

 Note that, with Propositions 3.6 and 3.7, we have indeed come up with the aH

 embedding f *: 2J -+ 2N, completing the fifth step of the construction.
 PROOF OF 3.1. We have constructed the following c.c. functors:

 C Y. H e - 2' 0 - . 210 k* 2J f 2

 their composite h =def f *k*Oey: C -+ 2N preserves the emptiness of C(A, B); that is,
 not hA < hB. Now, the poset reflection y: Set' 2N is a surjective functor. By the
 projectivity of C, there is a c.c. functor F: C -+ Set' such that 3F = h:

 4| _________

 Setz 2N

 It follows immediately that Set1(FA, FB) = 0, as desired. D 3.1
 Let us repeat the statement of the uniform extended Lauchli theorem, Theo-

 rem 0.3.1(b).
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 3.8. THEOREM. If C is a countable free connectionally closed category with the
 disjunction property, then there is a weakly full, connectionally closed functor from C
 to Setz.

 PROOF. The disjunction property of C translates into the following property of
 the poset reflection H of C: for x, y E H, if x v y = 1, then either x = 1, or y = 1. This
 means that F = { 1 } is a prime filter over H, and, of course, it is the least prime filter.
 In other words, I = [H, 2] has a least element I . Repeat the proof of 3.1 step by step
 by picking io = I in the third step; this makes IO = I and ' the identity functor
 (rendering the third step superfluous in this case). The composite functor h: C -+ 2
 will be full under these conditions as all its components are, which makes the final F:
 C -+ Setz weakly full. D 3.8
 REMARK (more on what happens when one chooses intuitionistic logic as the

 basic calculus). Had we chosen the intuitionistic, rather than minimal, logic as basis,
 the category of proofs would have been bicartesian closed (cf. the remark in ?2), and
 we would have to consider functors (or morphisms) that are b.c. rather than c.c. A
 functor F: C -+ Setz, with C a b.c. category with initial object f, is b.c. iff it is c.c. and
 maps f to the empty set 0. Since Lauchli regarded F(A) as the set of "abstract
 proofs" of the formula A, it seems more than reasonable to restrict ourselves to
 functors that are b.c., and assign to the false atom f an empty set of proofs. However,
 Theorems 3.1 and 3.8 become false if we require the free category and the functor
 involved to be b.c.! The simplest counterexample is, perhaps, the one (due to
 Lauchli) related to the formula - A v - - A, which is not provable intuitionist-

 ically, and yet, for any c.c. functor F: Z -+ Setz with F(f) = 0, there is always an
 arrow 1 -+ F(-i A v -- A), where 1 is the terminal object of Setz. It is an amusing
 exercise to see why A v - A is not a counterexample.

 Lauchli's 0.2.1, referring as it does to full intuitionistic logic, is true, and follows

 from 3.1 applied to the category C = S(T) with T the set of entailments f = A for
 all A; to see this, one invokes the italicized statement of ?0.3.

 In the context of Lauchli's completeness theorem, we consider c.c. functors
 F: C -+ Setz for which Ff may be nonempty, but for which we always have at least
 one arrow Ff -+ FA, for every formula A; such an arrow represents a function that
 transforms any possible abstract proof of f into one of A. This corresponds to the
 point of view that denies the existence of an "absolutely false" statement whose truth
 is inconceivable, and sees, instead, f as an idealized statement that is "hardest to
 prove". Seeing f as a hardest, rather than impossible, to prove statement removes a
 reasonable objection against the view that a proof of - A is a construction that
 transforms any proof of A into a proof of absurdity; the objection doubts that this
 view has a constructive meaning, given that "absurdity" is regarded as something
 that cannot possibly have any proof. This objection was strong enough to lead to the
 development of negationless intuitionistic mathematics (cf. [He, ?VIII.2]).

 One final comment. According to the view just explained, it would be wrong
 to stipulate, in the definition of a Kripke model, that i I - A iff for all j ? i, not
 (j IF-A); rather, one should say that i I kA iff for all j ? i, if j IFA then j IF B
 for all B (the structure produced in the proof of 3.2 is a Kripke model only in
 this sense).
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 ?4. Some definability results.
 4.1. Looking at the statements of 3.1 and 3.8 with a fresh eye we see that, in the

 first place, they say something about definability of sets rather than anything con-

 cerning proof theory. Notice that the arrows of the free c.c. category FY(X) are c.c.
 definable from the indeterminate objects and arrows that generate the category; by
 this we mean that they are definable by the set-theoretic operations codified in the
 notion of c.c. category, namely, the one-element set, Cartesian product, disjoint sum
 (=coproduct) and exponentiation of sets. We call the objects of F(X) c.c. types.
 Theorem 3.1 can be paraphrased as follows. If for two c.c. types A and B we always
 have an equivariant map A -+ B, no matter how we realize A and B as Z-sets through
 an interpretation of the indeterminate objects and arrows as Z-sets and equivariant
 maps between them, then we must have also some c.c. definable functional A -+ B.
 From this statement we can derive results of a purely definability-theoretical
 nature, no longer making any reference to Z7-sets. We can show, for instance, that
 if for c.c. types A and B there is a functional A -+ B definable in full classical type
 theory, then there is also a c.c. definable functional A -+ B. This terse statement
 conveys only a rough idea. To make it precise, we first have to elaborate the no-
 tions involved.

 4.2. Type theory has been extensively described in the literature. The following
 presentation closely follows [LS, Part II, ?1]. There are, in fact, many type theories.
 The language of any one is determined by a set Y of primitive type symbols and a set
 Y of primitive term symbols. Types and terms are certain expressions that we now
 describe.

 The types are the elements of Y and all expressions of the form 1, U x V and
 97(U), where U and V are types (an inductive definition; bY means power set). We
 write Q for Y(1).

 A very simple (actually, the intended) semantics for types is obtained by assign-
 ing an arbitrary set P' (i.e. an object of the category Set) to every primitive type
 symbol P and a one-element set 1# to the type symbol 1, and extending this in the
 natural way to an assignment of an object U# of Set to any type U. We also say
 that U# is the interpretation of the type U in the (Set-valued) model defined by
 the assignment #.

 We now turn to terms. Each term has its type, and we write "t: U" to indicate
 that the expression t is a term of type U; we write also "t := U" for "t: 9'(U)";
 terms of type Q are called formulas. The definition of terms proceeds by induction as
 follows:

 (i) If R E Y is a primitive term symbol, then R is associated with a definite type U
 and R :c U (we also say that R is a predicate over U; we do not need primitive terms
 other than ones of type of the form Y)(U)).

 (ii) For each type U we have a countably infinite list of variables of that type,
 each of them being a term of type U.

 (iii) *: 1.
 (iv) T, 1: Q (T and I are called "true" and "false").
 (v) If a: U and b: V then <a,b>: U x V.
 (vi) If a, a': U and a := U, then a = a' and a E a are formulas (the latter being also

 denoted as "x(a)").
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 (vii) If 0 and / are formulas and u: U is a variable, then 0 A V, + V a, + >fr,
 Mu e U.0 and Vu E U.0 are formulas as well.

 (viii) If 0 is a formula and u: U a variable, then {u E U I 0} :' U.
 Free and bound variables of terms are defined as usual, with u being bound in

 {lu E U 0}. A closed term is one with no free variables.
 The natural Set-valued semantics for types can be easily extended to terms.

 Assume that we have an assignment ' for types. If we further assign a subset R# of
 U' to each predicate R E Y over a type U, and we define I = 0 and T * = 1', then
 there is an easy natural extension of this to an interpretation that assigns to any term

 t: U with free variables v1: V1,..., v: Vow a function t#: V x ... x V >-+U' (i.e. t' is
 an arrow of the category Set; strictly speaking, t* is an interpretation of the pair
 (t, v), where v is a list that contains all free variables of t). In particular, a closed term
 t: U is interpreted as t#: 1 -+ U" which is, essentially, an element of U". A sentence

 (i.e. closed formula) 0 is said to be true in the model determined by # iff O# = T #
 A fact of particular importance for us is that we can define interpretations of

 types and terms as objects and arrows of the category Set', rather than Set.
 In fact, this can be done in such a way that if we forget the Z-set structure of the

 values of the types, we get the corresponding Set-valued interpretation. For

 example, for 7/-sets A and B, the exponential BA can be taken to be the 7-set C whose

 underlying set ICI is ICI = IBIIAI, and for which the action f ?-4 cf (a e X, f E IBIIAI)
 is given by (of)(a) = a(fr(-'a)) (where the inner o-' acts as on A, the outer one as
 on B). Below, we will make a statement of this circumstance that we think is better
 although less direct; for the time being, we leave it to the reader to ponder. Note that
 our claim includes the assertion that all the functions that arise as interpretations of
 terms turn out to be equivariant.

 Note that, as a consequence of the above, a sentence 0 is true in the model
 determined by the Set'-valued interpretation ' if it is true in the Set-model which is

 ' followed by the forgetful functor Set' -+ Set. Thus, calling a sentence 0 valid in
 Set if it is true in every Set-valued model, and similarly for Set', we obtain that Set
 and Set' are "type-theoretically equivalent": precisely the same sentences are valid
 in them! [The reader will see that in one direction this assertion uses an additional
 fact, namely that for interpretations in Set' where the basic types are interpreted
 as trivial 7-sets (every action is the identity map), truth is just as in Set; see also
 below.] Note that the axiom of choice is a sentence of type-theory that is valid
 in Set (and Set').

 4.3. A pure classical type theory is based on familiar axioms and rules which
 include the axioms of extensionality and comprehension, axioms describing pairing,
 and the Boolean axiom Vp Ec Q(p v (p > I)) (which makes the theory classical); see
 [LS, pp. 130-131] for details.

 A general, not necessarily pure, type theory is obtained by allowing also an
 arbitrary set E of extralogical axioms; we use "X F- 0" for denoting that 0 is provable
 in the type theory based on the extralogical axioms Z.

 It goes without saying that the deductive system for classical type theory is sound
 for the Set-valued interpretation: if, in any given interpretation, each axiom in 1 is

 true, and F- 0, then 0 is true as well. As a consequence of the above discussion, the
 same holds for Set'.
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 The adequacy of our semantics for type theory has various easy but significant
 consequences. One of particular importance in our context is this. For terms F :c U
 x V, S :c- U and T :c- V let "F: S -+ T" be the formula of type theory stating that F

 is the graph of a function from S (i.e. {y E U I y E S}) to T. If F, S and T are closed
 terms such that 1 F- F: S -+ T then, under any interpretation in Set or Set' that
 makes all 1 axioms true, F# is the graph of an arrow from S# to T'.

 4.4. The realm of objects described in type theory is much richer than that
 codified by the notion of c.c. category. In fact one can interpret the latter in the
 former. To be more precise, given a free c.c. category YF,(X), we interpret each c.c.
 type (i.e. object) A of F(X) as a closed term <A> := [A] of a type theory based on
 Y as set of primitive type symbols. We define <A> and [A] by simultaneous
 induction on c.c. types. The clauses of this definition are very natural. For example,
 if P E Y then [P] = P and <P> = {x E [P] I x = x}; also, [AB] = Y)([A] x [B])
 and <AB> = {x E Y)([A] x [B]) I x: <B> -+ <A>}, and so on (but notice that the
 disjoint sum should be interpreted in some unusual way, e.g. we could put

 [A + B] =Y(Y[A] x [B])

 and

 <A + B> = {<{a}, 0> I a e <A>} u {<0, b> I b e <B>},

 where in the last expression some obvious abbreviations are used). Next for every

 e c X with 4: d(4) -+ c(4), let <K> be a predicate symbol over [d(Q)] x [c(Q)]. Con-
 sider the type theory T based on Y as the set of primitive types, Y = {K<>: 4 e X}
 as the set of primitive terms and on the set of extralogical axioms 1 = ZYx con-
 sisting of the sentences <K>: <d(f)> -> <c(f)> for 4 e X. We have a full interpre-
 tation of F(X) in T in the sense that for every arrow f: A -+ B there is a term
 <f > :c [A] x [B] such that F- <f >: <A> -+ <B>.

 Composing this interpretation <-> of ,(X) in z with any E-valued model ' of
 2, where E is either Set or Setz, we get a c.c. functor <-># from F(X) into E (we
 mean, of course, that <-># maps any object A to <A >' and similarly for arrows). In
 fact, any c.c. functor F between the said categories is essentially of this form. More
 precisely, there is a natural isomorphism between F and <->#, where # is the model
 generated by the assignment that sends A e Y to FA and <K> to FX for any 4 e X.
 This is very easy to verify when E is Set or Setz (the latter being of the most
 importance in our context); more about the case of a more general E will be said in
 4.6 below.

 4.5. We are now ready to give a precise statement of a definability result.
 4.5.1. THEOREM. Let z be any set of sentences of type theory valid in Set. If A and

 B are objects of the free c.c. category ,(X), then the following three conditions are
 equivalent:

 (i) There is a closed term f :c A x B such that 1 u Z F-f: <A> -> <B>.
 (ii) There is a c.c. definable functional (i.e. an -(X)-arrow) A + B.

 (iii) A B is deducible from the entailments d(4) c(4) (4 e X) in minimal logic.
 PROOF. (iii) -: (ii) is the essence of ?2. (ii) -: (i) follows immediately from the

 existence of the assignment f 4 <f> given in 4.4. (i) = (iii) follows from 3.1 with
 the help of the facts mentioned in the last paragraph of 4.4.
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 We could extend pure type theory by adding a primitive type symbol N together
 with axioms stating that N is a "natural number object" which means that N

 behaves like the natural numbers system; cf. [LS, Part II, ??3 and 4]; the result
 remains true. Another variant of 4.5.1, which follows from 3.8 rather than from 3.1,

 states that if E(X) has the disjunction property and Zyx proves a statement like

 f: <A> -+ <B> v g: <C> -+ <D>;

 then either A =-- B or C =-- D is provable from {d(4) => c(4): 4 E X} in minimal logic.
 Let us point out that the equivalence of (i) and (iii) implies, via the decidability of

 intuitionistic propositional logic, that the question of the existence of a functional

 U -+ V definable in classical type theory is decidable if the question is restricted
 to definable sets U and V of the forms <A> and <B>, with A and B c.c. types.

 4.6. As it is pointed out in [LS, Part II], type theories are intimately related to

 toposes. Actually, the notion of topos can be viewed as a categorical formulation
 of that of an (intuitionistic) type theory. (Therefore, it is remarkable how simple
 the definition of topos is; although every topos is in particular bicartesian closed
 (see ?1), the definition of "topos" is shorter than that of "bicartesian closed cate-

 gory".) In particular, the type theory determined by (S, X, 2) gives rise to a topos

 Y(-, X, 2) = ST(1). The objects of T(1) are the closed terms of the theory, with
 two such terms S and T being identified whenever they are provably equal in 1
 (which means that, in particular, they have the same type). The arrows S -+ T are

 the 1-definable functionals, i.e. the terms R such that 1 proves R: S -+ T where,
 again, we identify two such terms whenever E proves their equality. The composi-
 tion of arrows is defined in a straightforward manner that we leave to the reader to
 spell out. See [LS, Part II, ??1 1 and 12] for more details including the easy identi-

 fication of the topos structure of Y(1). Now we can view <->: F(X) -+> 3(1yx)
 as a c.c. functor and #: Y(Zyx) -+ E as a logical functor (a functor between toposes
 is called logical if it preserves the topos structure).

 We have thus associated a topos ,4(Zyx) with every free c.c. category y(X). This
 state of affairs can be generalized: there is a purely category-theoretical operation
 that associates with any c.c. category C a topos A(C) such that in the particular case

 of C = F(X), A(C) is isomorphic to Y(1,x). A description of this construction is
 as follows. Let BooleTop be the category of Boolean toposes and Concl be that of c.c.
 categories. Every topos is a c.c. category, hence we have the forgetful functor P:
 BooleTop -+ Concl that associates with each Boolean topos the same category as a

 c.c. one and leaves morphisms alone. P has a left adjoint A: Concl -+ BooleTop (see
 [CWM], for instance). A(C) may be described as the Boolean topos freely c.c.-
 generated by the c.c. category C; by this we mean that A(C) satisfies and is
 characterized up to isomorphism by the following universal property: it is a Boolean

 topos that comes with a c.c. morphism F = Fc: C -+ A(C) such that for any c.c.
 morphism G: C -+ E into a Boolean topos E, there is a unique logical morphism H:
 A(C) -+ E such that G = H * F. A remark: the reason for our saying "c.c.-generated"

 rather than, simply, "generated" is that the topos freely generated by C is some-
 thing entirely different; in the "c.c.-generated" case, the connecting morphism
 F: C -+ A(C) is c.c. whereas in the other case it is a mere functor and the c.c. struc-
 ture of C plays no role in A(C) whatsoever.
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 That this construction generalizes the one described before for free c.c. categories

 is seen from the following fact.

 4.6.1. PROPOSITION. If C =,j(X) is a free c.c. category, then A(C) and Fc are
 isomorphic to Y(fy4x) and <-> respectively.

 The existence of the functor A and the assertion of 4.6.1 are not shown in [LS],

 but closely related facts are. In Example 16.5 on p. 209, the free topos generated by a

 graph is described in similar terms (in this case, the category of graphs replaces

 Concl and the category of toposes replaces BooleTop). We ask the reader to accept
 4.6.1 without proof (those who feel ambitious may work it out analogously to the
 reference we just gave).

 The following purely category-theoretical statement can be seen as a reformu-

 lation of 4.5.1.

 4.6.2. THEOREM. If C is a free c.c. category freely c.c.-generating the Boolean

 topos A(C) with canonical c.c. functor F: C -* A(C), then F is weakly full.
 PROOF. Suppose first that C is countable. By 3.1 there is a set I and a weakly full

 c.c. functor G: C -+ (Set')'. Since (Set')' is a Boolean topos, the universal property
 of A(C) implies the existence of a (logical) functor H such that G = H F. The weak
 fullness of G immediately implies that of F. The general statement for not necessarily

 countable C follows from the special case just proved, by general arguments on the

 nature of free constructions. C 4.6.2
 Notice that 4.5.1 with Z = 0 immediately follows from 4.6.1 and 4.6.2.
 Referring back to the last three paragraphs of ?4.2, we recall that the relevant

 topos-theoretic facts are, first, that Set' is a Boolean topos, with the forgetful functor
 Set' -- Set being logical (this fact is mentioned e.g. in Example (ii) on p. 65 of [BW]),
 and secondly, that the functor Set -- Setz mapping a set to the Z-set with the trivial
 action on the given set is also logical (Set' is atomic; see [BD]).

 4.7. Theorem 4.6.2 has an interesting significance for proof theory. This becomes

 evident if we keep in mind the syntactical character of the categories ,F,(X) and
 (Zyx). The objects of Fy(X) are actually sentences, and its arrows are denoted by
 (terms representing) deductions of entailments in a theory T (in minimal prop-

 ositional logic), two deductions denoting the same arrow precisely when their
 equality is provable from the c.c. identities of ?2. Analogously, the objects and

 arrows of Y(lZx) are denoted by formal expressions, namely, certain terms of type
 theory with two such denoting the same object or the same arrow iff they are

 provably equal in E.x Finally, <->, viewed as a syntactical operation on formal
 expressions, establishes a link between the two categories as it associates, with any

 sentence A and deduction f, terms <A> and <f> denoting an object and an arrow of
 flfx). We may say that sentences and deductions originally used to construct
 .F,(X) "live" in Y(24x) as well. The following terminology is, therefore, justified.

 4.7.1. DEFINITION. If A and B are sentences and F :c [A] x [B] a constant term

 such that yx F- F: <A> -- <B>, then we say that F is a deduction of A => B in the
 generalized sense or, for short, a generalized deduction.

 Now 4.6.2 can be paraphrased as follows:

 4.7.2. COROLLARY. If an entailment A = B has a generalized deduction F, then it
 has also a(n ordinary) deduction.
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 All the considerations described so far can be extended to predicate calculus in
 the framework of fibrations; cf. [MI] and [M2]. The extended version of Corol-
 lary 4.7.2 answers in the affirmative a generalized version of a question asked by
 Howard [Ho, p. 489]. We should mention that, when we only had some vague
 feeling that the present work might be connected to this, Professor Howard kindly
 informed us that he had answered in the mean-time his own question but had not
 published the solution yet. Howard regards formulae as types (analogously, we
 regarded sentences as c.c. types) and defines, for every formula 4, a family of terms
 of type b, each such family denoting a proof of b in Heyting arithmetic (HA). He
 interprets his terms set-theoretically. In particular, proofs of existential and of dis-
 junctive formulas are interpreted as ordered pairs (a proof of ]x.4(x) is a pair

 <nf> with n a natural number and f a proof of 4(n), and a proof of &0 v 4b is
 <i, f > with i = 0 or 1 and f a proof of /0). The two projection operations that map
 an ordered pair to its components do not have a clear logical meaning, but, re-
 marks Howard, they can be used in building more terms. One gets an extended
 class of terms, some of them of types that are not formulas. Howard's question is:
 if there is a closed term G in this extended class such that G has as type a formula
 b, then must b be provable in HA? The positive answer follows from 4.7.2 because
 the extended terms of Howard can be identified with terms that describe arrows
 in Y(Zx) (some cumbersome details have to be worked out to bridge the gap
 between Howard's working in natural deduction and set theory vs. our use of
 Lambek's system and type theory). Corollary 4.7.2 actually generalizes Howard's
 positive answer to his question in two respects: first, it applies to arbitrary theories,
 not just to HA, and second, the family of extended terms is closed under all
 type-theoretical operations, not just some, as in [Ho]. However, Howard's solu-
 tion answers more than originally asked (cf. the next paragraph).

 It is natural to ask about further properties of the functor C -> A(C) of 4.3, and
 about related properties of other similarly constructed functors. First of all, for the
 same reasons as we could have Z in 4.5.1, we may "impose" the "relations" b = T on

 A(C) for any set of sentences 0 valid in the standard interpretation. This fact could
 be expressed quite elegantly in categorical terms; but we shall not do so. As to the
 natural question of strengthening "weakly full" to "full" in the conclusion, the
 answer is no, as George Cubric (McGill University) has pointed out to us. However,
 if in place of A(C) we consider the free topos, rather than the free Boolean topos, the
 resulting extension-functor might in general be full and in fact also faithful at the
 same time. In fact, Howard's full answer to his own question amounts to the fullness
 of the appropriate functor in a special case.

 If F ( = <->) turns out to be faithful, this will mean that whenever two deductions
 f and g of the same entailment are provably equal in Zx (i.e., Z -x F Kf> = <g>),
 the equality f = g is deducible from the c.c. identities. D. Prawitz advanced the
 thesis that two deductions in natural deduction represent the same proof iff they
 are inter-reducible in a suitable lambda-calculus (see [Pr, p. 257]). We believe
 that, after a suitable and natural link is established between natural deduction and
 the Lambek calculus, Prawitz's inter-reducibility will turn out to be equivalent to
 equality deducible under the c.c. identities (note, in particular, the absence of any
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 special treatment of "false"). Thus, the question of the faithfulness of the functor F,
 or any of its variants, is relevant to the question of how stable the notion of
 equivalence of proofs is.
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