Models of Intuitionistic Logic, Model Solution 1

1. We write A_{i} for $A_{i}(P)$. First note that for any sentence A we have that $A \rightarrow A$ is derivable in IPC (by \rightarrow-introduction). From this it follows that for all $i \in \mathbb{N}$ we have $A_{i} \rightarrow A_{i}$ and $A_{i} \rightarrow A_{\omega}$. Next we have that $(A \rightarrow B) \wedge(B \rightarrow C) \rightarrow(A \rightarrow C)$ is derivable in IPC. Therefore, we only have to check that every level in the diagram implies the next one. Both $\perp \rightarrow P$ and $\perp \rightarrow \neg P$ are derivable in IPC (absurdity rule). Now let $n \in \mathbb{N}$. Then $A_{2 n+1} \rightarrow\left(A_{2 n+2} \rightarrow A_{2 n+1}\right)$, $A_{2 n+1} \rightarrow A_{2 n+1} \vee A_{2 n+2}$ and $A_{2 n+2} \rightarrow A_{2 n+1} \vee A_{2 n+2}$ are derivable in IPC. Recall that $A_{2 n+2} \rightarrow A_{2 n+1}=A_{2 n+4}$ and $A_{2 n+1} \vee A_{2 n+2}=A_{2 n+3}$ We conclude that $A_{i} \leq A_{j} \Longrightarrow A_{i} \rightarrow A_{j}$.
(Note: the deduction trees for all derivable statements are not required, as they are quite elementary).

Points:
1 point) $A \rightarrow A$ is derivable, concluding $A_{i} \rightarrow A_{i}$ and $A_{i} \rightarrow A_{\omega}$.
1 point) $(A \rightarrow B) \wedge(B \rightarrow C) \rightarrow(A \rightarrow C)$ is derivable, concluding that only at each level of the diagram has to be checked.
1 point) Implications at the bottom of the diagram.
1 point) Implications for $n \in \mathbb{N}$.
2. a) For this one the domain does not matter, so fix some constant inhabited domain. Let A be a nullary relationsymbol. Consider the following Kripke Model:

Then $1 \Vdash A$, so $0,1 \Vdash \neg A$. So $0 \Vdash \neg \neg A$, but $0 \Vdash A$, so $0 \Vdash \neg \neg A \rightarrow A$. b) For this one the domain does not matter, so fix some constant inhabited domain. Let A and B be nullary relationsymbols. Consider the following Kripke Model:

We have $1 \Vdash A$ and $1 \Vdash B$ hence $0 \Vdash A \rightarrow B$. As $1 \Vdash A$ we have $0 \Vdash(A \rightarrow B) \rightarrow A$. But $0 \Vdash A$, so $0 \Vdash((A \rightarrow B) \rightarrow A) \rightarrow A$.
c) Let A be a unary relationsymbol. Consider the following Kripke Model:

$$
\begin{array}{lll}
1 & \{a, b\} & \Vdash A(b) \\
\mid & \\
0 & \{a\}
\end{array}
$$

Then $1 \Vdash \exists x A(x)$, hence $0,1 \Vdash \neg \exists x A(x)$, hence $0 \Vdash \neg \neg \exists x A(x)$. But $0,1 \Vdash A(a)$, hence $0 \Vdash \neg A(a)$. So $0 \Vdash \neg \neg A(a)$, and thus $0 \Vdash \exists x \neg \neg A(x)$. We conclude that $0 \Vdash \vdash \neg \neg \exists x A(x) \rightarrow \exists x \neg \neg A(x)$.

Points:
At each exercise you get 1 point for a correct Kripke Model and 1 point for a correct explanation why it works.

