Models of Intuitionistic Logic, Model Solution 1

1. We write A_i for $A_i(P)$. First note that for any sentence A we have that $A \to A$ is derivable in IPC (by \rightarrow -introduction). From this it follows that for all $i \in \mathbb{N}$ we have $A_i \to A_i$ and $A_i \to A_{\omega}$. Next we have that $(A \to B) \land (B \to C) \to (A \to C)$ is derivable in IPC. Therefore, we only have to check that every level in the diagram implies the next one. Both $\bot \to P$ and $\bot \to \neg P$ are derivable in IPC (absurdity rule). Now let $n \in \mathbb{N}$. Then $A_{2n+1} \to (A_{2n+2} \to A_{2n+1})$, $A_{2n+1} \to A_{2n+1} \lor A_{2n+2}$ and $A_{2n+2} \to A_{2n+1} \lor A_{2n+2}$ are derivable in IPC. Recall that $A_{2n+2} \to A_{2n+1} = A_{2n+4}$ and $A_{2n+1} \lor A_{2n+2} = A_{2n+3}$ We conclude that $A_i \leq A_j \implies A_i \to A_j$.

(Note: the deduction trees for all derivable statements are not required, as they are quite elementary).

Points:

1 point) $A \to A$ is derivable, concluding $A_i \to A_i$ and $A_i \to A_{\omega}$. 1 point) $(A \to B) \land (B \to C) \to (A \to C)$ is derivable, concluding that only at each level of the diagram has to be checked. 1 point) Implications at the bottom of the diagram. 1 point) Implications for $n \in \mathbb{N}$.

2. a) For this one the domain does not matter, so fix some constant inhabited domain. Let A be a nullary relationsymbol. Consider the following Kripke Model:

$$\begin{array}{ccc} 1 & \Vdash A \\ \\ \\ 0 \\ \end{array}$$

Then $1 \Vdash A$, so $0, 1 \not\models \neg A$. So $0 \Vdash \neg \neg A$, but $0 \not\models A$, so $0 \not\models \neg \neg A \rightarrow A$. b) For this one the domain does not matter, so fix some constant inhabited domain. Let A and B be nullary relationsymbols. Consider the following Kripke Model:

$$\begin{array}{ccc} 1 & \Vdash A \\ \\ \\ 0 \\ \end{array}$$

We have $1 \Vdash A$ and $1 \nvDash B$ hence $0 \nvDash A \to B$. As $1 \Vdash A$ we have $0 \Vdash (A \to B) \to A$. But $0 \nvDash A$, so $0 \nvDash ((A \to B) \to A) \to A$.

c) Let A be a unary relation symbol. Consider the following Kripke Model:

$$\begin{array}{ccc} 1 & \{a,b\} & \Vdash A(b) \\ \\ \\ 0 & \{a\} \end{array}$$

Then $1 \Vdash \exists x A(x)$, hence $0, 1 \nvDash \neg \exists x A(x)$, hence $0 \Vdash \neg \neg \exists x A(x)$. But $0, 1 \nvDash A(a)$, hence $0 \Vdash \neg A(a)$. So $0 \nvDash \neg \neg A(a)$, and thus $0 \nvDash \exists x \neg \neg A(x)$. We conclude that $0 \nvDash \neg \neg \exists x A(x) \to \exists x \neg \neg A(x)$.

Points:

At each exercise you get 1 point for a correct Kripke Model and 1 point for a correct explanation why it works.