Solutions Homework Set 10, Models of Intuitionism - Bobby Vos \& Ruben Meuwese

Exercise 1

Define α as follows:

$$
\alpha(e)=\mu n \leq j_{2}(e)\left(\forall_{x \leq j_{2}(e)}\left(x \neq n \rightarrow \exists_{y \leq f(e)} T\left(j_{1}(e), x, y\right)\right)\right)
$$

with f defined as

$$
f(e)=\mu n\left(\exists_{x \leq j_{2}(e)} \forall_{y \leq j_{2}(e)}\left(x \neq y \rightarrow \exists_{z \leq n} T\left(j_{1}(e), y, z\right)\right)\right) .
$$

To see that α is partial recursive, note that we can rewrite the above equations as

$$
\alpha(e)=\mu n \leq j_{2}(e)\left(\forall_{x \leq j_{2}(e)}\left(x=n \vee \exists_{y \leq f(e)} T\left(j_{1}(e), x, y\right)\right)\right),
$$

and

$$
f(e)=\mu n\left(\exists_{x \leq j_{2}(e)} \forall_{y \leq j_{2}(e)}\left(x=y \vee \exists_{z \leq n} T\left(j_{1}(e), y, z\right)\right)\right)
$$

respectively. We see that α (and necessarily also f) is constructed by means of minimalisation, bounded quantification and disjunction of partial recursive predicates. Hence, we may conclude α itself is partial recursive as well.

To see that α meets the requirements, let e be a natural number such that V_{e} contains only a single element k. That is, e is a number such that $\varphi_{j_{1}(e)}$ is undefined on only a single number k smaller or equal to $j_{2}(e)$. Then certainly $f(e)$ is defined, since we can simply take it to be the least upper bound of $\left\{z: T\left(j_{1}(e), y, z\right) \wedge y \leq j_{2}(e) \wedge k \neq y\right\}$. Consequently, $\alpha(e)$ will also be defined and, in particular, will be equal to the number k.

Grading:
1 point for giving an appropriate α.
1 point for showing this α meets the requirements.

Exercise 2

a) Let $A(x) \equiv \exists y T x x y$ and suppose we can derive $\forall x(\neg \exists y T x x y \vee \neg \neg \exists y T x x y)$. Applying our knowledge of realizability, we see that the preceding assumption means that $\forall x(\neg \exists y T x x y \vee$ $\neg \neg \exists y T x x y)$ is realizable in Kleene's sense. That is, there exists a number n such that

$$
n \text { realizes } \forall x(\neg \exists y T x x y \vee \neg \neg \exists y T x x y)
$$

which means

$$
\text { for all } m: \varphi_{n}(m) \text { realizes } \neg \exists y T x x y \vee \neg \neg \exists y T x x y \text { and } \varphi_{n}(m) \downarrow
$$

i.e.

$$
\text { for all } \begin{aligned}
m: j_{1}\left(\varphi_{n}(m)\right) & =0 \text { implies } j_{2}\left(\varphi_{n}(m)\right) \text { realizes } \neg \exists y T x x y \text { and } \\
j_{1}\left(\varphi_{n}(m)\right) & \neq 0 \text { implies } j_{2}\left(\varphi_{n}(m)\right) \text { realizes } \neg \neg \exists y T x x y \text { and } \varphi_{n}(m) \downarrow
\end{aligned}
$$

The first implication tells us that if $j_{1}\left(\varphi_{n}(m)\right)=0$ then there is no realizer for $\exists y T x x y$, i.e. $\varphi_{x}(x)$ is undefined. Similarly, the second implication tells us that if $j_{1}\left(\varphi_{n}(m)\right) \neq 0$ then there is no realizer for $\neg \exists y T x x y$. From the latter fact, we can infer that there must exist some y such that $T x x y$, i.e. $\varphi_{x}(x)$ is defined. This, however, implies that the function $j_{1} \circ \varphi_{n}$ decides the diagonal halting set and we have arrived at a contradiction.

Grading:
1 point for linking derivability to realizability.
0.5 points for selecting the right formula A.

1 point for deriving the contradiction.
b) Suppose there exists a recursive set C such that $B \subseteq C$ and $A \subseteq \mathbb{N} \backslash C$. Since C is recursive, there exists an index i such that φ_{i} is the characteristic function of C. Next, note that if $x \in A$, then $x \notin C$ and thus $\varphi_{i}(x)=1$. Similarly, if $x \in B$ then $x \in C$ and hence $\varphi_{i}(x)=1$. Now, suppose $i \in C$. Then $\varphi_{i}(i)=0$ and thus, by definition of A, we have $i \in A$, which implies $i \notin C$: a contradiction. In the same vein, we arrive at a contradiction in case $i \notin C$. We conclude A and B are recursively inseparable.

Grading:
0.5 points for showing $x \in A, x \in B$ imply $\varphi_{i}(x)=1, \varphi_{i}(x)=0$ respectively.

1 point for considering the index i of the characteristic function of C.
1 point for showing $i \in C$ and $i \notin C$ both lead to a contradiction.
c) Let $\alpha(x, y), \beta(x, y)$ be the characteristic functions of the sets $\{(x, y): T x x y \wedge U(y)=0\}$ and $\{(x, y): T x x y \wedge U(y)=1\}$ respectively. Then the sets $\{x: \exists y \alpha(x, y)\}$ and $\{x: \exists y \beta(x, y)\}$ are identical to the sets A and B from exercise 2 b respectively and, hence, are recursively inseparable. Now, suppose

$$
\begin{equation*}
\forall x(\neg(\exists y(\alpha(x, y)=0) \wedge \exists y(\beta(x, y)=0)) \rightarrow \neg \exists y(\alpha(x, y)=0) \vee \neg \exists y(\beta(x, y)=0)) \tag{1}
\end{equation*}
$$

is derivable in $\mathbf{H A}+\mathrm{CT}_{0}$. Because A and B are recursively inseparable, we have

$$
\begin{equation*}
\forall x(\neg(\exists y(\alpha(x, y)=0) \wedge \exists y(\beta(x, y)=0)) \tag{2}
\end{equation*}
$$

From (1) and (2) it follows that

$$
\begin{equation*}
\forall x(\neg \exists y(\alpha(x, y)=0) \vee \neg \exists y(\beta(x, y)=0)) \tag{3}
\end{equation*}
$$

is derivable, which implies it is also realizable in Kleene's sense. That is, there exists a number n such that

$$
n \text { realizes } \forall x(\neg \exists y(\alpha(x, y)=0) \vee \neg \exists y(\beta(x, y)=0))
$$

Applying the definition of realizability, we get

$$
\text { for all } m: \varphi_{n}(m) \text { realizes }(\neg \exists y(\alpha(x, y)=0) \vee \neg \exists y(\beta(x, y)=0)) \text { and } \varphi_{n}(m) \downarrow
$$

for all $m: j_{1}\left(\varphi_{n}(m)\right)=0$ implies $j_{2}\left(\varphi_{n}(m)\right)$ realizes $\neg \exists y(\alpha(x, y)=0)$ and

$$
j_{1}\left(\varphi_{n}(m)\right) \neq 0 \text { implies } j_{2}\left(\varphi_{n}(m)\right) \text { realizes } \neg \exists y(\beta(x, y)=0) \text { and } \varphi_{n}(m) \downarrow
$$

Hence, we have a recursive function φ_{n} such that $\varphi(x)=0$ implies that there exists no y such that $\alpha(x, y)=0$ and $\varphi_{n}(x) \neq 0$ implies that there exists no y such that $\beta(x, y)=0$. That is, if $\exists y(\alpha(x, y)=0)$ then $\varphi_{n}(x) \neq 0$ and if $\exists y(\beta(x, y)=0)$ then $\varphi_{n}(x)=0$.

Now, let C be the set with characteristic function φ_{n}. Clearly, C is recursive. Moreover, if $x \in A$ then, by definition of $A, \exists y(\alpha(x, y)=0)$. Hence, $\varphi_{n}(x) \neq 0$, which means $x \in \mathbb{N} \backslash C$. Thus, we see $A \subseteq \mathbb{N} \backslash C$. Alternatively, if $x \in B$ then $\exists y(\beta(x, y)=0)$ and thus $\varphi_{n}(x)=0$. We infer that $x \in C$ and hence $B \subseteq C$. This, however, contradicts the fact that A and B are recursively inseparable. We conclude (1) is not derivable in $\mathbf{H A}+\mathrm{CT}_{0}$.

Grading:
1 point for finding appropriate functions α and β.
1 point for showing the existence of φ_{n}.
1 point for showing the recursive set C separates A and B.

