Seminar on Models of Intuitionism

Hand-in exercise 11: model solution
11 May

Exercise 1.

(a) Let X and $Y G$-sets. The G-actions on X and Y induce a G-action on the cartesian product of X and Y. Namely, for $(x, y) \in X \times Y$, put $g \cdot(x, y)=(g \cdot x, g \cdot y)$. One readily verifies that this indeed satisfies the axioms for a group action. So $X \times Y$ is a G-set.
We show that the projection $\pi: X \times Y \rightarrow X$ is a G-map. Let $g \in G$ and $(x, y) \in X \times Y$. Then $g \cdot \pi(x, y)=g \cdot x=\pi(g \cdot x, g \cdot y)=\pi(g \cdot(x, y))$. So π is indeed a G-map. Similarly, the projection $\pi^{\prime}: X \times Y \rightarrow Y$ is also a G-map.
Now suppose we have a G-set Z and G-maps $a: Z \rightarrow X$ and $b: Z \rightarrow Y$. We claim that $\langle a, b\rangle: Z \rightarrow$ $X \times Y$ given by $z \mapsto(a(z), b(z))$ is a G-map. To this end, let $g \in G$ and $z \in Z$. Note that $g \cdot\langle a, b\rangle(z)=g \cdot(a(z), b(z))=(g \cdot a(z), g \cdot b(z))=(a(g \cdot z), b(g \cdot z))=\langle a, b\rangle(g \cdot z)$, since a and b are G-maps. Hence, $\langle a, b\rangle$ is indeed a G-map.
Also, we immediately see that $\pi \circ\langle a, b\rangle=a$ and $\pi^{\prime} \circ\langle a, b\rangle=b$. Finally, that $\langle a, b\rangle$ is the unique map with these properties follows immediately from the corresponding fact in Set.
Each paragraph is worth half a point.
(b) Suppose X and Y are G-sets. We need to define a G-action on Y^{X} such that the map $\varepsilon: X \times Y^{X} \rightarrow$ Y given by $(x, f) \mapsto f(x)$ is a G-map. That is: $g \cdot \varepsilon(x, f)=g \cdot f(x)$ should equal $\varepsilon(g \cdot(x, f))=$ $\varepsilon((g \cdot x, g \cdot f))=(g \cdot f)(g \cdot x)$ for any $x \in X$ and $f \in Y^{X}$. This suggests putting $g \cdot f=(x \mapsto$ $\left.g \cdot f\left(g^{-1} \cdot x\right)\right)$. For then, given any $x \in X$, we have $(g \cdot f)(g \cdot x)=g \cdot f\left(g^{-1} \cdot(g \cdot x)\right)=g \cdot f\left(\left(g^{-1} g\right) \cdot x\right)=$ $g \cdot f(e \cdot x)=g \cdot f(x)$, so ε is a G-map.
We verify that this is indeed a group action on Y^{X}. Let $f \in Y^{X}$ and $x \in X$. First of all, $(e \cdot f)(x)=$ $e \cdot f\left(e^{-1} \cdot x\right)=f(x)$, so $e \cdot f=f$. Furthermore, for all $g, h \in G$, we have

$$
\begin{aligned}
(h \cdot(g \cdot f))(x) & =h \cdot\left((g \cdot f)\left(h^{-1} \cdot x\right)\right)=h \cdot\left(g \cdot f\left(g^{-1} \cdot\left(h^{-1} \cdot x\right)\right)\right)=(h g) \cdot f\left(\left(g^{-1} h^{-1}\right) \cdot x\right) \\
& =(h g) \cdot f\left((h g)^{-1} \cdot x\right)=((h g) \cdot f)(x),
\end{aligned}
$$

so $h \cdot(g \cdot f)=(h g) \cdot f$, as desired.
We proceed by checking the universal property. Let Z be a G-set and $f: X \times Z \rightarrow Y$ a G-map. We claim that $\tilde{f}: Z \rightarrow Y^{X}$ given by $z \mapsto(x \mapsto f(x, z))$ is a G-map. Let $g \in G$ and $z \in Z$ be arbitrary. Note that since f is a G-map, we have for all $x \in X$ that:

$$
(g \cdot \tilde{f}(z))(x)=g \cdot f\left(g^{-1} \cdot x, z\right)=f\left(g \cdot\left(g^{-1} \cdot x\right), g \cdot z\right)=f(e \cdot x, g \cdot z)=f(x, g \cdot z)=\tilde{f}(g \cdot z)(x),
$$

so $g \cdot \tilde{f}(z)=\tilde{f}(g \cdot z)$. Thus, \tilde{f} is indeed a G-map.
Finally, we know that $\varepsilon \circ\left\langle\pi, \tilde{f} \circ \pi^{\prime}\right\rangle=f$ as we have seen this in Set. That \tilde{f} is the unique arrow with this property follows from the corresponding fact in Set.
One point each for the first two paragraphs. Half a point for each of the final two paragraphs.

Exercise 2.

(4) Let $A \stackrel{f}{\Rightarrow} \mathrm{~T}$ be a deduction. The equation $f=!_{A}$ identifies $A \stackrel{f}{\Rightarrow} \mathrm{~T}$ with $\overline{A \Rightarrow T^{\text {TRUE }}}$. In other words, there is, up to equivalence, exactly one deduction of the entailment $A \Rightarrow \mathrm{~T}$, namely the one given by the true-rule.
(5) Let $C \stackrel{f}{\Rightarrow} A$ and $C \stackrel{g}{\Rightarrow} B$ be deductions. The equation $\pi \circ\langle f, g\rangle=f$ identifies

$$
\frac{C \stackrel{f}{\Rightarrow} A \quad C \stackrel{g}{\Rightarrow} B}{\frac{C \Rightarrow A \wedge B}{\Rightarrow} \wedge \mathrm{R} \quad \overline{A \wedge B \Rightarrow A}^{\wedge \Rightarrow \mathrm{LI}}} \underset{\mathrm{CUT}}{C \Rightarrow A}
$$

with $C \stackrel{f}{\Rightarrow} A$ itself.
(7) Let $C \stackrel{h}{\Rightarrow} A \wedge B$ be a deduction. The equation $\left\langle\pi \circ h, \pi^{\prime} \circ h\right\rangle=h$ identifies
with $C \stackrel{h}{\Rightarrow} A \wedge B$ itself.
(10) Let $A \vee B \stackrel{h}{\Rightarrow} C$ be a deduction. The equation $\left[h \circ \kappa, h \circ \kappa^{\prime}\right]=h$ identifies

$$
\begin{gathered}
\frac{A \Rightarrow A \vee B}{A \mathrm{R} 1 \quad A \vee B \stackrel{h}{\Rightarrow} C} \mathrm{CUT} \frac{\overline{B A}^{A \Rightarrow A \vee B} \vee \mathrm{R} 2 \quad A \vee B \stackrel{h}{\Rightarrow} C}{B \Rightarrow C} \mathrm{CUT} \\
A \vee B \Rightarrow C
\end{gathered}
$$

with $A \vee B \stackrel{h}{\Rightarrow} C$ itself.
(12) Let $C \stackrel{k}{\Rightarrow} A \rightarrow B$ be a deduction. The equation $\left(\varepsilon \circ\left\langle\pi, k \circ \pi^{\prime}\right\rangle\right)^{\sim}=k$ identifies
with $C \stackrel{k}{\Rightarrow} A \rightarrow B$ itself.

