## Homework exercise 1

In this exercise you will fill in a gap in the proof of theorem 3.1 (see handout). Recall that we fixed a complete Heyting algebra $\Omega$ and some $\Omega$-set $(X, \delta)$. Let $A \subset \Omega$ and suppose that we are given an arrow $\alpha_{a}: 1_{a} \rightarrow(X, \delta)$ for each $a \in A$ such that for all $a, a^{\prime} \in A$ we have

$$
\alpha_{a} \circ e_{a \wedge a^{\prime} a}=\alpha_{a} \circ e_{a \wedge a^{\prime} a^{\prime}}
$$

where $e_{q p}$ is the unique arrow $1_{q} \rightarrow 1_{p}$ for $q \leq p$. Set $p=\bigvee A$ and define $\alpha:\left\{*_{p}\right\} \times X \rightarrow \Omega$ by $\alpha\left(*_{p}, x\right)=\bigvee_{a \in A} \alpha_{a}\left(*_{a}, x\right)$. Show that $\alpha$ is an arrow $1_{p} \rightarrow(X, \delta)$.

Hint. In the previous homework we have seen that any complete lattice that satisfies the infinitary distributive law is a complete Heyting algebra. In this exercise you may use, without proof, the converse of that statement: any complete Heyting algebra satisfies the infinitary distributive law. That is, for any $p \in \Omega$ and any subset $A \subset \Omega$ one has:

$$
p \wedge \bigvee A=\bigvee_{a \in A} p \wedge a
$$

Scoring. There are four properties to check, the first three are each rewarded with one point, the fourth is rewarded with two points.

## Homework exercise 2

Your goal is to prove that the implication subsheaf $A \rightarrow B$ defined during the lecture is indeed a sheaf. Recall that given subsheaves $A, B \subset F$ over some fixed complete Heyting algebra $\Omega$, we define the implication to be

$$
(A \rightarrow B)_{p}:=\left\{\left.x \in F(p)|\forall q \leq p . x|_{q} \in A_{q} \Rightarrow x\right|_{q} \in B_{q}\right\} .
$$

Let $p \in \Omega$ and let $Q \subset \Omega$ be such that $\bigvee Q=p$. Let $\left(x_{q} \in(A \rightarrow B)_{q}\right)_{q \in Q}$ be such that for every $q, q^{\prime} \in Q,\left.x_{q}\right|_{q \wedge q^{\prime}}=\left.x_{q^{\prime}}\right|_{q \wedge q^{\prime}}$. Note that this is an arbitrary compatible family.

Show that this compatible family has a unique amalgamation. It may be helpful to split the work as follows:
a. (0.5 points) Show there is some unique $x \in F_{p}$ such that $\left.x\right|_{q}=x_{q}$ for every $q \in Q$. Conclude that if an amalgamation exists, it must be unique.
b. (0.5 points) Show that if $x \in A_{p}$ then for every $q \in Q, x_{q} \in A_{q}$.
c. (1 points) Show that if $x \in A_{p}$ then $x \in B_{p}$.
d. (2 points) Let $p^{\prime} \leq p$ and suppose $\left.x\right|_{p^{\prime}} \in A_{p^{\prime}}$. Show that $\left.x\right|_{p^{\prime}} \in B_{p^{\prime}}$.
e. (1 points) Conclude that $\left(x_{q} \in(A \rightarrow B)_{q}\right)_{q \in Q}$ has a unique amalgamation in $(A \rightarrow B)_{p}$.

## Solution to exercise 1

Let us denote $\alpha(x)$ for $\alpha\left(*_{p}, x\right)$ and likewise $\alpha_{a}(x)$ for $\alpha_{a}\left(*_{a}, x\right)$. We will check properties (1) to (4) as numbered on the handout.

For property (1) we can use a direct calculation where we use property (1) from the arrows $\alpha_{a}: 1_{a} \rightarrow$ $(X, \delta)$.

$$
\begin{array}{ll}
\alpha(x) & = \\
\bigvee_{a \in A} \alpha_{a}(x) & \leq \\
\bigvee_{a \in A} \delta_{a}\left(*_{a}, *_{a}\right) \wedge \delta(x, x) & = \\
\bigvee_{a \in A} a \wedge \delta(x, x) & = \\
\delta(x, x) \wedge \bigvee A & = \\
\delta(x, x) \wedge p & = \\
\delta(x, x) \wedge \delta_{p}\left(*_{p}, *_{p}\right) . &
\end{array}
$$

Property (2) is also found by direct calculation, but this time using properties (1) and (2) from the arrows $\alpha_{a}: 1_{a} \rightarrow(X, \delta)$ and using property (1) from $\alpha$ as well.

$$
\begin{aligned}
& \delta_{p}\left(*_{p}, *_{p}\right) \wedge \alpha(x) \wedge \delta\left(x, x^{\prime}\right)=\delta\left(x, x^{\prime}\right) \wedge \bigvee_{a \in A} \alpha_{a}(x)=\bigvee_{a \in A} \delta\left(x, x^{\prime}\right) \wedge \alpha_{a}(x)= \\
& \bigvee_{a \in A} \delta_{a}\left(*_{a}, *_{a}\right) \wedge \alpha_{a}(x) \wedge \delta\left(x, x^{\prime}\right) \leq \bigvee_{a \in A} \alpha_{a}\left(x^{\prime}\right)=\alpha\left(x^{\prime}\right)
\end{aligned}
$$

Like the previous two properties, we again find property (3) by direct calculation.

$$
\delta_{p}\left(*_{p}, *_{p}\right)=p=\bigvee A \leq \bigvee_{a \in A} \bigvee_{x \in X} \alpha_{a}(x)=\bigvee_{x \in X} \bigvee_{a \in A} \alpha_{a}(x)=\bigvee_{x \in X} \alpha(x)
$$

Finally, property (4) is a little bit more work. First we note that

$$
\alpha(x) \wedge \alpha\left(x^{\prime}\right)=\left(\bigvee_{a \in A} \alpha_{a}(x)\right) \wedge\left(\bigvee_{a \in A} \alpha_{a}\left(x^{\prime}\right)\right)=\bigvee_{a, a^{\prime} \in A} \alpha_{a}(x) \wedge \alpha_{a^{\prime}}\left(x^{\prime}\right)
$$

It is now sufficient to show that $\alpha_{a}(x) \wedge \alpha_{a^{\prime}}\left(x^{\prime}\right) \leq \delta\left(x, x^{\prime}\right)$ for any $a, a^{\prime} \in A$. By property (1) for $\alpha_{a}$ we have $\alpha_{a}(x) \leq a$, and likewise $\alpha_{a^{\prime}}\left(x^{\prime}\right) \leq a^{\prime}$. So we see that $\alpha_{a}(x) \wedge \alpha_{a^{\prime}}\left(x^{\prime}\right) \leq a \wedge a^{\prime}$, hence

$$
\alpha_{a}(x) \wedge \alpha_{a^{\prime}}\left(x^{\prime}\right)=\left(\alpha_{a}(x) \wedge\left(a \wedge a^{\prime}\right)\right) \wedge\left(\alpha_{a^{\prime}}\left(x^{\prime}\right) \wedge\left(a \wedge a^{\prime}\right)\right)
$$

Now note that $\alpha_{a}(y) \wedge\left(a \wedge a^{\prime}\right)=\left(\alpha_{a} \circ e_{a \wedge a^{\prime} a}\right)(y)$ and $\alpha_{a^{\prime}}(y) \wedge\left(a \wedge a^{\prime}\right)=\left(\alpha_{a} \circ e_{a \wedge a^{\prime} a^{\prime}}\right)(y)$, for all $y \in X$. As $\alpha_{a}$ and $\alpha_{a^{\prime}}$ are part of a compatible family we can define $\alpha_{a \wedge a^{\prime}}:=\alpha_{a} \circ e_{a \wedge a^{\prime} a}=\alpha_{a^{\prime}} \circ e_{a \wedge a^{\prime} a^{\prime}}$, which is an arrow $1_{a \wedge a^{\prime}} \rightarrow(X, \delta)$. So by property (4) of that arrow and the above equality we find indeed

$$
\alpha_{a}(x) \wedge \alpha_{a^{\prime}}\left(x^{\prime}\right)=\alpha_{a \wedge a^{\prime}}(x) \wedge \alpha_{a \wedge a^{\prime}}\left(x^{\prime}\right) \leq \delta\left(x, x^{\prime}\right)
$$

## Solution to exercise 2

Clarification: The exercise should have explicitly stated that we assume $A \rightarrow B$ defined this way to be a presheaf, my apologies for the ambiguity.

Fix $\Omega, F, A, B, p, Q$, and $\left(x_{q}\right)_{q \in Q}$ as in the exercise.
(a). Since $F$ is a sheaf and $\left(x_{q}\right)_{q \in Q}$ satisfies the conditions of a compatible family, there is a unique amalgamation $x \in F_{p}$. Any amalgamation $x^{\prime}$ of $\left(x_{q}\right)_{q \in Q}$ in $(A \rightarrow B)_{p}$ would also be an amalgamation in $F_{p}$, and hence $x=x^{\prime}$ by uniqueness of $x$.
(b). Suppose $x \in A_{p}$. Since $x_{q}=\left.x\right|_{q}$ by the definition of an amalgamation, and $\left.x\right|_{q}=A(q \leq p)(x) \in$ $A_{q}$, we have $x_{q} \in A_{q}$.
(c). Suppose $x \in A_{p}$. For every $q \leq p, x_{q} \in A_{q}$, and since $x_{q} \in(A \rightarrow B)_{q}$, it follows that $x_{q} \in B_{q}$. By assumption, $B$ is a sheaf and thus the compatible family $\left(x_{q}\right)_{q \in Q}$ has an amalgamation in $B_{p}$. By the logic in (a), this amalgamation is $x$, hence $x \in B_{p}$.
(d). Let $p^{\prime} \leq p$ and suppose $\left.x\right|_{p^{\prime}} \in A_{p^{\prime}}$. Define $Q^{\prime}=\left\{q \wedge p^{\prime} \mid q \in Q\right\}$ and define a new compatible family $\left(x_{q^{\prime}}^{\prime}\right)_{q^{\prime} \in Q^{\prime}}$ by $x_{q^{\prime}}^{\prime}=\left.x\right|_{q^{\prime}}$. Note that $x_{q^{\prime}}^{\prime} \in A_{q^{\prime}}$ since $\left.x\right|_{q^{\prime}}=\left.\left.x\right|_{p^{\prime}}\right|_{q^{\prime}}$ and $\left.x\right|_{p^{\prime}} \in A_{p^{\prime}}$. This is a compatible family, since for any $q_{1}^{\prime}, q_{2}^{\prime} \in Q^{\prime}$ we have

$$
\left.\left.x\right|_{q_{1}^{\prime}}\right|_{q_{1}^{\prime} \wedge q_{2}^{\prime}}=\left.x\right|_{q_{1}^{\prime} \wedge q_{2}^{\prime}}=\left.\left.x\right|_{q_{2}^{\prime}}\right|_{q_{1}^{\prime} \wedge q_{2}^{\prime}} .
$$

Since $\Omega$ is a complete Heyting algebra, $\bigvee Q^{\prime}=\bigvee_{q \in Q} q \wedge p^{\prime}=p^{\prime} \wedge \bigvee Q=p^{\prime} \wedge p=p^{\prime}$, since $p^{\prime} \leq p$. By the same logic as in (a), this compatible family has a unique amalgamation $x^{\prime} \in F_{p^{\prime}}$. However, since $\left.x\right|_{p^{\prime}}$ is also an amalgamation of the compatible family, $x^{\prime}=\left.x\right|_{p^{\prime}}$ and thus $x^{\prime} \in A_{p^{\prime}}$, and thus by the same logic as in (c) we in fact have $x^{\prime} \in B_{p^{\prime}}$.

Grading: 1 point for the choice of compatible family, 1 point for the rest of the argument.
(e). By (d), for any $p^{\prime} \leq p$, if $\left.x\right|_{p^{\prime}} \in A_{p^{\prime}}$ then $\left.x\right|_{p^{\prime}} \in B_{p^{\prime}}$, and thus $x \in(A \rightarrow B)_{p}$, and hence $(x \in q)_{q \in Q}$ has a unique amalgamation in $(A \rightarrow B)_{p}$.

