# Seminar on Models of Intuitionism 

Solutions to hand-in exercise 5
23 March

## Exercise 1.

(a) By primitive recursion:

$$
\begin{aligned}
0! & =1=S 0 \\
(n+1)! & =n!\cdot(n+1)=H(n!, n)
\end{aligned}
$$

where $H(x, y)=x \cdot(y+1)$ is clearly primitive recursive.
(b) By primitive recursion:

$$
\begin{aligned}
\operatorname{pd}(0) & =0 \\
\operatorname{pd}(n+1) & =n=\pi_{2}^{2}(\operatorname{pd}(n), n) \\
x-0 & =x=\pi_{1}^{1}(x) \\
x-(n+1) & =\operatorname{pd}(x-n)=\operatorname{pd}\left(\pi_{1}^{3}(x-n, x, n)\right) .
\end{aligned}
$$

Furthermore, put $(x \leq y)=\operatorname{sg}(x-y)$ and $(x=y)=\operatorname{sg}((x-y)+(y-x))$.
(c) Let $\forall_{y<z}[F(\vec{x}, y)=0]=\operatorname{sg}\left(\Sigma_{y<z} F(\vec{x}, y)\right)$ and $x \nmid y=\forall_{z<y}[(1-(x \cdot z=y))=0]$.
(d) Let $\operatorname{prime}(x)=\operatorname{sg}\left(x \geq S(S(Z(x)))+\forall_{y<x}[(y \leq S(Z(x))) \cdot(y \nmid x)=0]\right.$ ) (i.e. $x$ is prime iff $x \geq 2$ and for any $y<x$, we have $y \leq 1$ or $y$ does not divide $x$ ).
(e) By primitive recursion:

$$
\begin{aligned}
p_{0} & =1=S 0 \\
p_{n+1} & =\mu y<\left(p_{n}!+2\right)\left[\operatorname{prime}(y)+\left(p_{n}+1 \leq y\right)=0\right]=H\left(\pi_{2}^{2}\left(p_{n}, n\right)\right),
\end{aligned}
$$

where $H(x)=\mu y<(x!+2)[\operatorname{prime}(y)+(x+1 \leq y)=0]$ is a composition of primitive recursive functions and therefore primitive recursive.
Note that this works, because the least divisor $y>1$ of $p_{n}!+1$ is prime and must be unequal to $p_{1}, \ldots, p_{n}$; for if $y=p_{i}$, then $y \mid p_{n}$ !, so $y \mid 1$, contradicting that $y>1$.
Half a point for a right bound; half a point for an explanation of why this bound works; one point for an otherwise correct definition.

Exercise 2. By the Recursion Theorem applied to the primitive recursive function $\lambda x y$. $(x<y)$ (i.e. $\lambda x y .1-(y \leq x)$ ), we have $e$ such that $\varphi_{e}(x) \simeq(x<e)$ for all $x$. Note that $\varphi_{e}$ is recursive and that it is self-describing as the least $x$ with $(x<e) \neq 1$ is exactly $e$.

## Exercise 3.

(a) Let $G(x, y, z) \simeq \Phi(1, x, y) \simeq \varphi_{x}(y)$ be partial recursive (it is so, since $\Phi$ is). By the Enumeration Theorem, it has an index $c$. Put $F(x, y)=S_{1}^{2}(c, x, y)$ and observe that $F$ is recursive (in fact, even primitive recursive, since $S_{1}^{2}$ is). Further,

$$
\begin{aligned}
(x, y) \in H & \Leftrightarrow \varphi_{x}(y) \text { is defined } \\
& \Leftrightarrow G(x, y, F(x, y)) \text { is defined } \\
& \Leftrightarrow \varphi_{c}(x, y, F(x, y)) \text { is defined } \\
& \Leftrightarrow \varphi_{S_{1}^{2}(c, x, y)}(F(x, y)) \text { is defined } \\
& \Leftrightarrow \varphi_{F(x, y)}(F(x, y)) \text { is defined } \\
& \Leftrightarrow F(x, y) \in K
\end{aligned}
$$

Half a point for defining $G$ and explaining that it is partial recursive; one point for applying the Enumeration Theorem, defining $F$ and mentioning that $F$ is recursive; one point for showing that $F$ works and completing the proof.
(b) Suppose for a contradiction that $\chi_{K}$ were recursive. Then so would $x y \cdot \chi_{K}(F(x, y))$. But by (a) this function is exactly $\chi_{H}$, contradicting the undecidability of the Halting Problem.

