Exercise 1

a) Suppose $n \in \mathbb{N}$ realizes the sentence. Applying the realization rule for \forall , we find that for *n*:

for all
$$m$$
 : ($\varphi_n(m)$ realizes $S(m) = 0 \rightarrow \bot$) and $\varphi_n(m) \downarrow$

By the realization rule for \rightarrow , we next have: for all m, m':

 $(m' \text{ realizes } S(m) = 0 \text{ implies } \varphi_{\varphi_n(m)}(m') \text{ realizes } \perp \text{ and } \varphi_{\varphi_n(m)}(m') \downarrow) \text{ and } \varphi_n(m) \downarrow$

Note that S(m) = 0 is not realized by any number since it is false for the natural numbers. Hence, the above implication holds true for any n, m and m'. The only requirement on n that remains is that $\varphi_n(m)$ is defined for every m. We can thus take any n for which φ_n is everywhere defined. For example, we might take n to be the index of the constant zero function.

Grading:

(0.5 points) Working out the realizability rules for the given sentence.

(0.5 points) Giving a correct realizer.

b) Suppose $n \in \mathbb{N}$ realizes the sentence. Applying the realization rule for \lor , we find that for *n*:

 $(\text{fst}(n) = 0 \text{ implies } \text{snd}(n) \text{ realizes } P) \text{ and } (\text{fst}(n) \neq 0 \text{ implies } \text{snd}(n) \text{ realizes } P \rightarrow \bot)$

By the realization rule for \rightarrow , we next have:

$$(fst(n) = 0 \text{ implies } snd(n) \text{ realizes } P)$$

and

 $(\text{fst}(n) \neq 0 \text{ implies for all } m : m \text{ realizes } P \text{ implies } (\varphi_{\text{snd}(n)}(m) \text{ realizes } \perp \text{ and } \varphi_{\text{snd}(n)}(m) \downarrow))$

Assume that *P* is true. In this case, $n = \langle 0, n' \rangle$ satisfies the above condition, where n' is an arbitrary natural number. On the other hand, if *P* is not true, then there exists no number *m* such that *m* realizes *P*. Hence, the above condition is satisfied by any natural number *n*. In either case, we see that the sentence $P \lor \neg P$ is always realizable.

Grading:

(0.5 points) Working out the realizability rules for the given sentence.

(0.5 points) Giving a correct realizer.

c) Suppose $n \in \mathbb{N}$ realizes the sentence. Applying the realization rules for \forall, \lor , and \exists we find that for *n*: for all $m : \varphi_n(m) \downarrow$ and

$$fst(\varphi_n(m)) = 0$$
 implies $snd(\varphi_n(m))$ realizes $m = 0$

and

 $fst(\varphi_n(m)) \neq 0$ implies $snd(snd(\varphi_n(m)))$ realizes $m = S(fst(snd(\varphi_n(m))))$

Now, suppose that m = 0. Then we can take $\varphi_n(m) = \langle 0, k \rangle$, with k an arbitrary natural number. Next, suppose $m \neq 0$. Then we can take $\varphi_n(m) = \langle 1, \langle m - 1, 0 \rangle \rangle$. The defined function is recursive and, in particular, everywhere defined. Hence, the sentence is realizable.

Grading:

(1 point) Working out the realizability rules for the given sentence. (0.5 points) Giving a correct realizer.

Exercise 2

If CT_0 were to hold true, this would imply that every total function is recursive. Thus, we might take the formula A(x, y) to represent the statement that $\chi_H(x) = y$, where χ_H is the characteristic function of the Halting set. For this A, it is clear that the sentence obtained from the schema CT_0 is not provable in **PA**. Hence, in particular, it is not provable in **HA**.

Grading:

(1 point) Linking the problem to the undecidability of the Halting Problem and giving a correct instantiation of CT_0 .

(1 point) Showing the obtained instantiation is not derivable in HA.

Exercise 3

a) Let's spell out what it means for *e* **rn** $\forall x(A(x) \rightarrow \exists yB(x, y))$:

 $\forall x (\forall m (m \text{ rn } A(x) \to \text{snd}(\varphi_{\varphi_e(x)}(m)) \text{ rn } B(x, \text{fst}(\varphi_{\varphi_e(x)}(m))) \land \varphi_{\varphi_e(x)}(m) \downarrow) \land \varphi_e(x) \downarrow).$

Hence, from this we can deduce

$$\forall x(\psi_A(x) \operatorname{rn} A(x) \land \psi_A(x) \downarrow \rightarrow \operatorname{snd}(\varphi_{\varphi_e(x)}(\psi_A(x))) \operatorname{rn} B(x, \operatorname{fst}(\varphi_{\varphi_e(x)}(\psi_A(x)))) \land \varphi_{\varphi_e(x)}(\psi_A(x)) \downarrow).$$

Now, since A(x) is almost negative, we can apply Proposition 1.8 to conclude that for any n we have $n \operatorname{rn} A(x) \to A(x)$ and $A(x) \to \psi_A(x) \operatorname{rn} A(x) \wedge \psi_A(x) \downarrow$ So we conclude that

 $\forall x, n(n \operatorname{\mathbf{rn}} A(x) \to \operatorname{snd}(\varphi_{\varphi_{e}(x)}(\psi_{A}(x))) \operatorname{\mathbf{rn}} B(x, \operatorname{fst}(\varphi_{\varphi_{e}(x)}(\psi_{A}(x)))) \land \varphi_{\varphi_{e}(x)}(\psi_{A}(x)) \downarrow)$

as desired.

Grading

(1 point): correct unfolding definition of rn.

(0.5 points): As *A* is almost negative, we can apply proposition 1.8.

b) We define $t_2(e) := [\lambda x.[\lambda n. \langle \mu z.T([t_1(e)], x, z), \langle 0, \operatorname{snd}(\varphi_{\varphi_e(x)}(\psi_A(x)) \rangle \rangle]]$. Suppose we have an *x* and *n* such that *n* **rn** *A*(*x*). Then by *a*) we conclude that $\varphi_{\varphi_e(x)}(\psi_A(x)) \downarrow$, hence also $\operatorname{fst}(\varphi_{\varphi_e(x)}(\psi_A(x))) \downarrow$ and $\operatorname{snd}(\varphi_{\varphi_e(x)}(\psi_A(x))) \downarrow$. Notice then that $\mu z.T([t_1(e)], x, z)$ terminates (as $\varphi_{[t_1(e)]}(x) \simeq \operatorname{fst}(\varphi_{\varphi_e(x)}(\psi_A(x)))$ and we have that $T([t_1(e)], x, \mu z.T([t_1(e)], x, z))$ holds. On the other hand, by *a*) we also have that $\operatorname{snd}(\varphi_{\varphi_e(x)}(\psi_A(x)))$ **rn** $B(x, \operatorname{fst}(\varphi_{\varphi_e(x)}(\psi_A(x))))$ holds. Hence by definition of **rn** and using the hint we conclude

$$T([t_{1}(e)], x, \mu z.T([t_{1}(e)], x, z)) \wedge \operatorname{snd}(\varphi_{\varphi_{e}(x)}(\psi_{A}(x)) \operatorname{rn} B(x, \operatorname{fst}(\varphi_{\varphi_{e}(x)}(\psi_{A}(x))))) \equiv 0 \operatorname{rn} T([t_{1}(e)], x, \mu z.T([t_{1}(e)], x, z)) \wedge \operatorname{snd}(\varphi_{\varphi_{e}(x)}(\psi_{A}(x)) \operatorname{rn} B(x, U(\mu z.T([t_{1}(e)], x, z)))) \equiv \langle 0, \operatorname{snd}(\varphi_{\varphi_{e}(x)}(\psi_{A}(x)) \rangle \operatorname{rn} T([t_{1}(e)], x, \mu z.T([t_{1}(e)], x, z)) \wedge B(x, U(\mu z.T([t_{1}(e)], x, z))))) \equiv \langle \mu z.T([t_{1}(e)], x, z), \langle 0, \operatorname{snd}(\varphi_{\varphi_{e}(x)}(\psi_{A}(x)) \rangle \rangle \operatorname{rn} \exists z(T([t_{1}(e)], x, z) \wedge B(x, U(z))) \equiv \langle \mu z.T([t_{1}(e)], x, z), \langle 0, \operatorname{snd}(\varphi_{\varphi_{e}(x)}(\psi_{A}(x)) \rangle \rangle \operatorname{rn} B(x, \varphi_{[t_{1}(e)]}(x)) \wedge \varphi_{[t_{1}(e)]}(x) \downarrow \equiv \langle \mu z.T([t_{1}(e)], x, z), \langle 0, \operatorname{snd}(\varphi_{\varphi_{e}(x)}(\psi_{A}(x)) \rangle \rangle \operatorname{rn} B(x, \operatorname{fst}(\varphi_{\varphi_{e}(x)}(\psi_{A}(x)))) \wedge \operatorname{fst}(\varphi_{\varphi_{e}(x)}(\psi_{A}(x))) \downarrow .$$

As $[\lambda n. \langle \operatorname{snd}(\varphi_{\varphi_e(x)}(\psi_A), \langle 0, \mu z. T([t_1(e)], x, z) \rangle \rangle]$ is just a code of a partial recursive function, it is defined. So we deduce that

$$t_2(e) \operatorname{\mathbf{rn}} \forall x(A(x) \to B(x, \operatorname{fst}(\varphi_{\varphi_e(x)}(\psi_A(x)))) \land \operatorname{fst}(\varphi_{\varphi_e(x)}(\psi_A(x))) \downarrow).$$

Grading:

(0.5 points): Finding the correct term.

(0.5 points): Argumenst that some of the terms are defined.

(1 point): Show that the presented term indeed realises the statement.

c) We define $x := [\lambda e. \langle [t_1(e)], t_2(e) \rangle]$ and claim that x **rn** *F*. Spelling out the definitions:

So by *b*) we conclude that *x* **rn** *F* and we thus have **HA** $\vdash \exists x(x \text{ rn } F)$.

Grading: (0.5 points) Finding the correct term. (0.5 points) Show that it works.