Models of Intuisionism

Hand-in exercise 7: Model solution
Sven Bosman

(1a.) Let $F(P)$ be a given assignment of possible solutions to P. Since $F(P)$ is nonempty, we know that there is some element $a \in F(P)$, and hence the constant a-function f_{a} : $F(\neg \neg P) \rightarrow F(P)$ is an element of $F(\neg \neg P \rightarrow P)$. We now define the constant a-function for every $a \in F(P)$, and we fix a specific $a \in F(P)$. Also note that we can easily define a well-ordering on $F(P)$, since it is finite. We will define a function $g \in F(\varphi)$ by:

$$
g(h)= \begin{cases}h\left(f_{b}\right) & \text { if } b \text { is the least element of } F(P) \text { such that } h\left(f_{b}\right) \in\{1\} \times F(\neg \neg P) \\ h\left(f_{a}\right) & \text { if such an element } b \text { does not exist }\end{cases}
$$

We claim that this function g is an element of $X(\varphi)$ for every assignment $X(P)$. In order to prove this we need a case distinction between $X(P)=\emptyset$ and $X(P) \neq \emptyset$.
Suppose first that $X(P)$ is empty. Then we notice that $X(\neg P)=F(\neg P)$ and $X(\neg \neg P)=\emptyset$. And by this last observation we notice that $f_{a} \in X(\neg \neg P \rightarrow P)$ for all $a \in F(P)$. Now if $h \in X((\neg \neg P \rightarrow P) \rightarrow(\neg P \vee \neg \neg P))$ is given, then we always have $h\left(f_{a}\right) \in X(\neg P \vee \neg \neg P)$, and hence we find that $g(h) \in X(\neg P \vee \neg \neg P)$ for all $h \in X((\neg \neg P \rightarrow P) \rightarrow(\neg P \vee \neg \neg P))$. So indeed in this case we have that $g \in X(\varphi)$.
Now suppose that $X(P)$ is not empty. Then let $b \in X(P)$, so we notice that $f_{b}(X(\neg \neg P)) \subseteq$ $X(P)$. Hence $f_{b} \in X(\neg \neg P \rightarrow P)$, which means that if $h \in X((\neg \neg P \rightarrow P) \rightarrow(\neg P \vee \neg \neg P))$ then $h\left(f_{b}\right) \in X(\neg P \vee \neg \neg P)$. We easily notice that in this case we have that $X(\neg P)$ is empty so $h\left(f_{b}\right) \in\{1\} \times X(\neg \neg P)$. Since there is such an element b, we know that $g(h)=h\left(f_{c}\right)$ with c the smallest element in $F(P)$ such that $h\left(f_{c}\right) \in\{1\} \times F(\neg \neg P)$. Since $X(\neg \neg P)=F(\neg \neg P)$ we now know that $g(h) \in X(\neg P \vee \neg \neg P)$, so indeed we see that $g \in X(\varphi)$.

The case distinction on $X(P)$ was crucial in this exercise, so using this was awarded 1 point. Working out $X(\varphi)$ in the different cases was also worth 1 point. 1 point was awarded for giving a correct function, and 1 point for the rest of the proof.
(1b.) We prove that φ is not provable in intuitionistic logic by giving a Kripke counter model. Consider the following model:

Here P is forced in world 2 , and we see that $\neg P$ is forced in world 3 . We see that $\neg \neg P$ is forced in worlds 1 and 2 . So worlds 2 and 3 are the only ones where $\neg \neg P \rightarrow P$ is forced, and in both of these worlds we see that $\neg P \vee \neg \neg P$ is forced. So in fact we see that $(\neg \neg P \rightarrow P) \rightarrow(\neg P \vee \neg \neg P)$ is forced in all the worlds of this Kripke model. However, since
$\neg P$ is forced in world 3 and P in world 2 , we see that $\neg P \vee \neg \neg P$ is not forced in world 0 . So φ is not forced in world 0 . It follows that φ is not provable in intuitionistic logic. Combining exercises a and b we conclude that the Medvedev model of finite problems is not complete with respect to intuitionistic propositional logic.

1 point was awarded for giving a correct Kripke model. $1 \frac{3}{4}$ point for explaining why this model works, and $\frac{1}{4}$ point for the conclusion on completeness.
(2.) Let $J=\bigwedge_{i<n}\left(\left(P_{i} \rightarrow Q_{i}\right) \rightarrow Q_{i}\right) \rightarrow R$ is a critical implication. Define $F(x)=\{*\}$ for every elementary x occurring in J. We now show that for every $f \in F(J)$, we can find an assignment X to the elementary problems in J such that $f \notin X(J)$. So suppose we are given an f in $F(J)$. We first notice that $F\left(P_{i}\right)=\{\langle *, *, \ldots, *\rangle\}=\star$ for every i, so define for every $i: g_{i}: F\left(P_{i} \rightarrow Q(i)\right) \rightarrow F\left(Q_{i}\right)$ by $g_{i}(h)=h(\star)$. Let x_{1}, \ldots, x_{r} be the elementary problems occurring in R. Notice that $f\left(\left\langle g_{0}, \ldots, g_{n-1}\right\rangle\right)=\langle j, *\rangle$ for some $j \leq r$. Now let $X\left(x_{j}\right)=\emptyset$ and $X(x)=F(x)$ for all $x \neq x_{j}$. We notice that if we can prove that $g_{i} \in X\left(\left(P_{i} \rightarrow Q_{i}\right) \rightarrow Q_{i}\right)$ for every i, we would find that $f \notin X(J)$. We will show this using a case distinction. So we fix an $i<n$.
First suppose that x_{j} does not occur in Q_{i}. Then $X\left(Q_{i}\right)=F\left(Q_{i}\right)$, and hence we find that $F\left(\left(P_{i} \rightarrow Q_{i}\right) \rightarrow Q_{i}\right)=X\left(\left(P_{i} \rightarrow Q_{i}\right) \rightarrow Q_{i}\right)$. So clearly $g_{i} \in X\left(\left(P_{i} \rightarrow Q_{i}\right) \rightarrow Q_{i}\right)$.
Now suppose that x_{j} does occur in Q_{i}. Then clearly is does not occur in P_{i}, so $X\left(P_{i}\right)=F\left(P_{i}\right)$. For any $a \in X\left(P_{i} \rightarrow Q_{i}\right)$, we know that $a\left(X\left(P_{i}\right)\right) \subseteq X\left(Q_{i}\right)$. So since $X\left(P_{i}\right)=\{\star\}$, we know that $g_{i}(a)=a(\star) \in X\left(Q_{i}\right)$. So we indeed see that $g_{i}\left(X\left(P_{i} \rightarrow Q_{i}\right)\right) \subseteq X\left(Q_{i}\right)$. And hence $g_{i} \in X\left(\left(P_{i} \rightarrow Q_{i}\right) \rightarrow Q_{i}\right)$.

1 point was awarded for giving a possible solution assignment and to every f an assignment X such that $f \notin X(J)$. Proving that this X is correct was worth 2 points. A solution which only works in the case that R is disjoint from all the Q_{i} was awarded with at most 1 point.

