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Algebra Universalis

Intuitionistic logic and Muchnik degrees

Andrea Sorbi and Sebastiaan A. Terwijn

Abstract. We prove that there is a factor of the Muchnik lattice that captures
intuitionistic propositional logic. This complements a now classic result of Skvortsova
for the Medvedev lattice.

1. Introduction

Among the structures arising from computability theory, the lattices intro-
duced by Medvedev and Muchnik stand out for several distinguished features
and a broad range of applications. In particular, these lattices have an addi-
tional structure that makes them suitable as models of certain propositional
calculi. The structure of the Medvedev lattice as a Brouwer algebra, and thus
as a model for propositional logics, has been extensively studied in several
papers, see e.g., [10], [15], [17], [20], [22]. Originally motivated in [10] as a
formalization of Kolmogorov’s calculus of problems [7], the Medvedev lattice
fails to provide an exact interpretation of the intuitionistic propositional cal-
culus IPC; however, as shown by Skvortsova [15], there are initial segments
of the Medvedev lattice that model exactly IPC. On the other hand, little is
known about the structure of the Muchnik lattice, and of its dual, as Brouwer
algebras. The goal of this paper is to show that there are initial segments
(equivalently: factors obtained dividing the lattice by principal filters) of the
Muchnik lattice, in which the set of valid propositional sentences coincides
with IPC. This shows that the analogue of Skvortsova’s theorem also holds
for the Muchnik lattice. From this, it readily follows that the propositional
sentences that are valid in the Muchnik lattice are exactly the sentences of the
so-called logic of the weak law of the excluded middle ([17]). Similar results
(as announced, with outlined proofs, in [18]) hold for the dual of the Muchnik
lattice: detailed proofs are provided in Section 5.

For all unexplained notions from computability theory, the reader is re-
ferred to Rogers [14]; our main source for Brouwer algebras and the algebraic
semantics of propositional calculi is Rasiowa-Sikorski [13]. A comprehensive
survey on the Medvedev and Muchnik lattices, and their mutual relationships,
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can be found in [19]. Throughout the paper, we use the symbols + and × to
denote the join and meet operations, respectively, in any lattice.

1.1. The Medvedev and the Muchnik lattices. Although our main ob-
ject of study is the Muchnik lattice, reference to the Medvedev lattice will be
sometimes useful. Therefore, we start by reviewing some basic definitions and
facts concerning both lattices. Following Medvedev [10], a mass problem is a
set of functions from the set of natural numbers ω to ω. There are two natural
ways to extend Turing reducibility to mass problems: following [10], a mass
problem A is Medvedev-reducible to a mass problem B (denoted by A !M B),
if there is an oracle Turing machine by means of which every function of B,
when supplied to the machine as an oracle, computes some function of A.
(Any oracle Turing machine defines in this sense a partial mapping from ωω

to ωω, called a partial computable functional.) A different approach, which
consists in dropping uniformity, leads to Muchnik reducibility, [12], denoted
by !w: here A !w B if for every g ∈ B there is an oracle Turing machine
which computes some f ∈ A when given g as an oracle. This amounts to
saying that A !w B if and only if for every g ∈ B there is some f ∈ A such
that f !T g. Both definitions may be viewed as attempts at formalizing Kol-
mogorov’s idea of a calculus of problems: Kolmogorov’s informal problems are
now identified with mass problems; to “solve” a mass problem means to find
a computable member in it; A !M B and A !w B are then formalizations of
“A is less difficult than B”, as one can solve A given any solution to B. In
the same vein, one can introduce a formal “calculus” of mass problems, by
defining A + B = {f ⊕ g : f ∈ A and g ∈ B}, where

f ⊕ g(x) =

{
f(y), if x = 2y,

g(y), if x = 2y + 1;

and A × B = ⟨0⟩̂A ∪ ⟨1⟩̂B, where in general, for i ∈ ω and a given mass
problem C, ⟨i⟩̂C = {⟨i⟩̂f : f ∈ C}, and ⟨i⟩̂f denotes the concatenation of
the string ⟨i⟩ with the function f . We see that A + B has a solution if and
only if both A and B have solutions; and A × B has a solution if and only if
at least one of them has. Being preordering relations, both !M and !w give
rise to degree structures: the equivalence class degM (A) of a mass problem A,
under the equivalence relation ≡M generated by !M , is called the Medvedev

degree of A; the equivalence class degw(A) of a mass problem A, under the
equivalence relation ≡w generated by !w, is called the Muchnik degree of A.
The corresponding degree structures are not only partial orders, but in fact
bounded distributive lattices, with operations of join and meet (still denoted by
+ and ×) defined through the corresponding operations on mass problems. It is
easily seen that both lattices are distributive. The lattice of Medvedev degrees
is called the Medvedev lattice, denoted by M; the lattice of Muchnik degrees
is called the Muchnik lattice, denoted by Mw. Finally, the least element 0 in
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both lattices is the degree of any mass problem containing some computable
function, and the greatest element 1 is the degree of the mass problem ∅.

A Muchnik mass problem A is a mass problem satisfying: If f ∈ A and
f !T g, then g ∈ A.

Lemma 1.1. The following hold:

(1) for every mass problem A, there is a unique Muchnik mass problem C(A)
such that A ≡w C(A);

(2) Mw is a completely distributive complete lattice, with A × B ≡w A ∪ B,

and if A and B are Muchnik mass problems then A + B ≡w A ∩ B.

Proof. Define C(A) = {f : (∃g ∈ A)[g !T f ]}. The lattice Mw is complete:
if {Ai : i ∈ I} is any collection of mass problems, then the infimum and the
supremum of the corresponding Muchnik degrees are given by

∏
{degw(Ai) : i ∈ I} = degw(

⋃
{Ai : i ∈ I}),

∑
{degw(Ai) : i ∈ I} = degw(

⋂
{C(Ai) : i ∈ I}).

We will often extend the
∏

and
∑

operations to mass problems by defining:
∏

{Ai : i ∈ I} =
⋃
{Ai : i ∈ I}

∑
{Ai : i ∈ I} =

⋂
{C(Ai) : i ∈ I} .

Complete distributivity follows from the fact that infima and suprema are
essentially given by set theoretic unions and intersections. "

Both in M and in Mw, a degree S is called a degree of solvability if it contains
a singleton. The following considerations concerning degrees of solvability
apply to both M and Mw: it is easy to see that the degrees of solvability
form an upper semilattice, with least element, which is isomorphic to the
upper semilattice, with least element, of the Turing degrees; for every degree
of solvability S, there is a unique minimal degree > S that is denoted by S′ (cf.
Medvedev [10]): If S = degM ({f}), then S′ is the degree of the mass problem

{f}′ =
{
⟨n⟩̂g : g ̸!T f ∧ Φn(g) = f

}
,

where {Φn}n∈ω is an effective list of all partial computable functionals; note
further that for any f , we have {f}′ ≡w {g ∈ ωω : f <T g} so that in Mw we
can use this simplified version of {f}′. In particular, 0′ =

{
g : g >T ∅

}
is the

unique minimal nonzero Muchnik degree.

2. Brouwer algebras and intermediate propositional calculi

We now recall the basic definitions and facts about Brouwer and Heyting
algebras, and their relation with propositional logics.

Definition 2.1. A distributive lattice L with least and largest elements 0
and 1, respectively, and with operations of join and meet denoted by + and ×,
respectively, is a Brouwer algebra if for every pair of elements a and b, there
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is a smallest element, denoted by a → b, such that a + (a → b) # b. Thus,
a Brouwer algebra can be viewed as an algebraic structure with three binary
operations +,×,→, together with the nullary operations 0, 1. For applications
to propositional logic, it is also convenient to enrich the signature of a Brouwer
algebra with a further unary operation ¬, given by ¬a = a → 1.

Given a Brouwer algebra L, we can identify a propositional formula ϕ, hav-
ing n variables, with an n-ary polynomial pϕ of L, in the restricted signature
⟨+,×,→,¬⟩: the identification makes the propositional connectives ∨,∧,→,¬
correspond to the operations ×,+,→,¬ of L, respectively. Note that ∨ corre-
sponds to ×, not +, and dually ∧ corresponds to +, not ×. (For polynomials
in the sense of universal algebra, we refer to [3].) The polynomial pϕ is a
function pϕ : Ln −→ L.

Definition 2.2. Let L be a Brouwer algebra. A propositional formula ϕ
having n variables is true in L if pϕ(a0, . . . , an−1) = 0 for all (a0, . . . , an−1) ∈
Ln. The set of all propositional formulas that are true in L is denoted by
Th(L).

The propositional formulas lying in Th(L) are called in [14] the identities

of L. This is consistent with the way the term “identity” is commonly used in
universal algebra: indeed, ϕ ∈ Th(L) if and only if pϕ ≈ 0 is an identity of L
(with pϕ and 0 regarded as terms of the type of Brouwer algebras: terminology
and notations are here as in [2]).

The dual notion is studied as well.

Definition 2.3. A distributive lattice L with least and largest elements 0 and
1 is a Heyting algebra if its dual Lop is a Brouwer algebra. That is, a → b is the
largest element of L such that a× (a → b) ! b. A propositional formula is true

in the Heyting algebra L (or, an identity of L) if the polynomial pop
ϕ , obtained

from pϕ by interchanging × and +, evaluates to 1 under every valuation of its
variables with elements from L. The set of all formulas that are true in L as
a Heyting algebra is denoted by ThH(L). Note that ThH(L) = Th(Lop).

Lemma 2.4. Suppose that L0 and L1 are Brouwer algebras, and suppose that

F : L0 −→ L1 is a Brouwer homomorphism (i.e., a homomorphism of bounded

lattices, which also preserves →).

(1) If F is injective, then Th(L1) ⊆ Th(L0);
(2) If F is surjective, then Th(L0) ⊆ Th(L1).

Proof. See [13]. "

Given a ! b in a Brouwer algebra L, L[a, b] denotes the interval

[a, b] = {x ∈ L : a ! x ! b} .

We abbreviate L[0, b] by L(! b), and we abbreviate L[a, 1] by L(# a).

Lemma 2.5. Suppose that L is a Brouwer algebra, and let a, b ∈ L be such

that a < b. Then L[a, b] is again a Brouwer algebra.
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Proof. Let → be the arrow operation in L. Then the arrow operation →[a,b]

in L[a, b] is given by

x →[a,b] y = a + (x → y). "

Lemma 2.6. Let L be a Brouwer algebra and let a, b, c ∈ L be such that a < b
and c + a = b. Then the mapping f(x) = x + a is a Brouwer homomorphism

of L(! c) onto L[a, b]. As a consequence, Th(L(! c)) ⊆ Th(L[a, b]).

Proof. See [15, Lemma 4]. "

Lemma 2.7. Let L be a distributive lattice, and suppose that x ! y and z
are arbitrary. Then the mapping c 2→ c × z is a surjective lattice-theoretic

homomorphism from the interval [x, y] onto the interval [x × z, y × z].

Proof. It is obvious that the mapping is a lattice-theoretic homomorphism.
Surjectivity follows from the fact that if x×z ! u ! y×z, then u is the image
of x + (u × y). "

2.1. The Medvedev and the Muchnik lattices as Brouwer algebras.

Examples of Brouwer algebras are provided by M (Medvedev [10]), Mw (Much-
nik [12]), and the dual Mop

w (Sorbi [16]):

Proposition 2.8. The Muchnik lattice Mw is both a Brouwer algebra and

a Heyting algebra. The Medvedev lattice M is a Brouwer algebra, but not a

Heyting algebra.

Proof. Mw is a Brouwer algebra ([12]), and a Heyting algebra ([16]) since it
is a completely distributive complete lattice by Lemma 1.1. For instance, to
show that Mw is a Brouwer algebra, on mass problems take

A → B =
∏
{C : B !w A + C}.

To show that M is a Brouwer algebra ([10]), on mass problems A,B, define

A → B = {⟨n⟩̂f : (∀g ∈ A)[Φn(g ⊕ f) ∈ B]} :

it is immediate that B !M A + (A → B), and

B !M A + C ⇔ A → B !M C.

Since Muchnik reducibility is a nonuniform version of Medvedev reducibility,
we can also notice that for the → operation in the Muchnik lattice as a Brouwer
algebra, one can take

A → B = {f : (∀g ∈ A)(∃h ∈ B)[h !T g ⊕ f ]} .

In terms of the calculus of problems, we observe that with these definitions
of →, for both Medvedev and Muchnik reducibility one has that A → B is a
mass problem such that any solution to it, together with any solution to A,
gives a solution to B. Thus, this implements the modus ponens proof rule.

That M is not a Heyting algebra was proved in Sorbi [16, Theorem 5.4]. "
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For either M or Mw, Definition 2.2 amounts to saying that a propositional
sentence is valid if and only if every substitution of mass problems to the
propositional variables in the sentence yields a solvable problem. Let IPC

denote the intuitionistic propositional calculus (see [13] for a suitable definition
of axioms and rules of inference), and let Jan be the intermediate propositional
logic obtained by adding to IPC the so called weak law of the excluded middle,
i.e., the axiom scheme ¬α ∨ ¬¬α, where α is any propositional sentence. It
is known (Medvedev [11], Jankov [5], Sorbi [17]) that Th(M) = Jan. Also,
Th(Mw) = Jan (announced in [17]).

By lattice theory, if L is a Brouwer algebra and b ∈ L, then the Brouwer al-
gebra L(! b) is lattice isomorphic to the quotient lattice obtained by dividing
L modulo the principal filter generated by b; likewise, L(# a) is isomorphic to
the quotient lattice obtained by dividing L modulo the principal ideal gener-
ated by a. The difference between these two quotients, see, e.g., [13], is that
lattice-theoretic congruences given by ideals are also congruences of Brouwer
algebras, and thus there is a surjective Brouwer homomorphism from L into
L(# a), giving Th(L) ⊆ Th(L(# a)) by Lemma 2.4. In order to find exact
interpretations of IPC in terms of mass problems, one should then turn atten-
tion to initial segments of the Medvedev lattice, i.e., to Brouwer algebras of
the form M(! A), where A is a nonzero Medvedev degree.

Theorem 2.9. (Skvortsova [15]) There exists A such that Th(M(! A)) =
IPC.

It is still an open problem (raised by Skvortsova [15, p.134]) whether there
is a Medvedev degree A that is the infimum of finitely many Muchnik de-
grees (i.e., Medvedev degrees containing Muchnik mass problems) such that
Th(M(! A)) coincides with IPC. The paper [20] is dedicated to initial seg-
ments of the Medvedev lattice and their theories as intermediate propositional
logics. Note that it does not make sense to ask whether Theorem 2.9 holds
for the dual of M, since M is not a Heyting algebra by [16]. In Section 4, we
show that Theorem 2.9 also holds for Mw, and in Section 5, we show that it
holds for the dual of Mw.

3. Capturing IPC with Brouwer and Heyting algebras

Consider the following classic result about IPC due to McKinsey and Tarski,
that provides an algebraic semantics for IPC using Brouwer algebras. (The
result also follows from the results in Jaśkowski [6]).

Theorem 3.1. (Jaśkowski [6], McKinsey and Tarski [9])

IPC =
⋂ {

Th(B) : B a finite Brouwer algebra
}

=
⋂ {

ThH(H) : H a finite Heyting algebra
}
.
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We wish to narrow down the family of Brouwer algebras and Heyting alge-
bras needed for this result, in order to suit our needs in the next section. The
result we will need later is formulated below as Corollary 3.11.

For a given lattice L, let J(L) denote the partial order of nonzero join-
irreducible elements of L. Recall the well-known duality between finite posets
and finite distributive lattices. Obviously, for every finite distributive lattice
L, J(L) is a poset, and conversely, for every finite poset P , we obtain a finite
distributive lattice H(P ) by considering the downwards closed subsets of P ([4,
Theorem II.1.9]). These operations are inverses of each other, as H(J(L)) ≃ L
(as lattices), and J(H(P )) ≃ P (as posets).

The following is a useful notion from the theory of categories. An equational
category is a category whose objects form a variety of algebras, and whose
morphisms are just the homomorphisms.

Definition 3.2. An object of an equational category L is weakly projective if
for every onto morphism f : L0 → L1 and every morphism g : L → L1, there
exists a morphism h : L → L0 such that g = f ◦ h. (If one changes “onto” in
this definition to “epi” then one obtains the definition of projective object.)

Lemma 3.3. A distributive lattice L is weakly projective if and only if its dual

Lop is.

Proof. It can be shown, see, e.g., [1, Theorem 1.14], that in a nontrivial equa-
tional category, an object is weakly projective if and only if it is a retract
of a free algebra. (Recall that A is a retract of B, if there are morphisms
f : A → B, g : B → A such that g ◦ f = 1A.) If L is weakly projective, and L
is a retract of a free distributive lattice F , then Lop is a retract of F op which
is still free. "

When considering the category of distributive lattices, the following useful
characterization of the finite weakly projective objects is available:

Theorem 3.4. [1, Corollary V.10.9] A finite distributive lattice L is weakly

projective if and only if whenever a and b are join-irreducible in L also a × b
is join-irreducible.

The following property from [23] gives an alternative characterization of
finite weakly projective distributive lattices:

Definition 3.5. A finite distributive lattice L is double diamond-like (dd-like,
for short) if in the poset J(L) there are two incomparable elements with at
least two minimal upper bounds.

Proposition 3.6. A finite distributive lattice L is weakly projective if and

only if it is not dd-like.

Proof. When L is weakly projective then every pair a, b of join-irreducible
elements has a greatest lower bound a × b that is join-irreducible, and hence
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a×b is also the greatest lower bound of a and b in the poset J(L)∪{0}. Hence,
L is not dd-like.

Conversely, if L is not weakly projective, then there are a, b ∈ J(L) such
that a × b is join-reducible. Without loss of generality, we can assume that a
and b are minimal in the sense that there are no elements of J(L) in between
a and a × b, and also no elements of J(L) in between b and a × b. Since any
element in a finite distributive lattice can be written as a finite join of join-
irreducible elements, there is a finite set X ⊆ J(L) such that a × b =

∑
X.

Since a × b itself is join-reducible, there are at least two maximal elements
x, y ∈ X. Then both a and b are minimal upper bounds of x and y in J(L),
hence L is dd-like. "

We now undertake the task of characterizing IPC by suitably restricted
families of Heyting algebras and Brouwer algebras. We can in fact start from
a family that was already used by Jaśkowski, by observing that it has certain
additional properties. The result we will need later is formulated below as
Corollary 3.9.

Lemma 3.7. If A and B are finite distributive lattices that are not dd-like,

then also their Cartesian product A × B is not dd-like.

Proof. We need in fact that only one of A and B is not dd-like. Suppose that
A is not dd-like. Note that (a, b) ∈ A × B is join-irreducible if and only if
a ∈ J(A) and b ∈ J(B). Suppose that A × B is not dd-like, say J(A × B)
contains the following configuration:

!

!

!

!

!
!

!
!!❅

❅
❅

❅❅(a0, b0)

(a2, b2)

(a1, b1)

(a3, b3)

Here the pairs (a2, b2) and (a3, b3) are minimal upper bounds for (a0, b0) and
(a1, b1) in J(A×B). Then in J(A), the elements a2 and a3 are upper bounds
for a0 and a1. Since by assumption A is not dd-like, not both of a2 and a3

are minimal upper bounds. Say a2 is not minimal, and that a0, a1 ! a < a2

in J(A). Replacing (a2, b2) by (a, b2), we see that (a2, b2) was not a minimal
upper bound of (a0, b0) and (a1, b1), contrary to assumption. "

We use the following result of Jaśkowski [6], (cited in Szatkowski [21, p41]).
Given two Heyting algebras A and B, let A + B be the algebra obtained by
stacking B on top of A, identifying 0B with 1A. (This notion of sum is from
Troelstra [24].) Given A and B, the Cartesian product A×B is again a Heyting
algebra. Let An denote the n-fold product of A.

Inductively define the following sequence of Heyting algebras. Let I1 be the
two-element Boolean algebra, and let In+1 = In

n + I1.
The following theorem characterizes IPC in terms of Heyting algebras:
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Theorem 3.8. (Jaśkowski [6]) IPC =
⋂

n ThH(In).

Corollary 3.9. There is a collection {Hn}n∈ω of finite Heyting algebras such

that

IPC =
⋂

n
ThH(Hn),

and such that for every n, Hn is weakly projective.

Proof. Note that the lattices In defined above are all distributive lattices, and
because they are finite, they are automatically Heyting algebras. We claim
that every In is not dd-like. This is clearly true for n = 1. Suppose that In is
not dd-like. Then by Lemma 3.7, also In

n is not dd-like. It follows immediately
that In+1 = In

n +I1 is also not dd-like. Hence, all In are finite Heyting algebras
that are not dd-like, and hence we can simply take Hn = In. "

Corollary 3.10. There is a collection {Bn}n∈ω of finite Brouwer algebras

such that

IPC =
⋂

n
Th(Bn),

and such that for every n, Bn is weakly projective.

Proof. Consider any propositional formula ϕ /∈ IPC. Then by Corollary 3.9,
there exists a weakly projective finite distributive lattice Hn and an evaluation
of pop

ϕ for which pop
ϕ ̸= 1, and thus, for this evaluation in Hop

n , pϕ ̸= 0, showing
that ϕ /∈ Th(Hop

n ). It remains to show that Bn = Hop
n is weakly projective:

this follows from Lemma 3.3. "

An easy way to obtain Corollary 3.10 would be to show that every finite
distributive lattice is the image of a weakly projective finite distributive lattice
under a Brouwer-homomorphism. (Corollary 3.10 would then follow immedi-
ately from Theorem 3.1 and Lemma 2.4 (2).) However, this is not true: One
can prove that every finite distributive lattice is the image of a weakly pro-
jective finite distributive lattice under a lattice-homomorphism, but in general
not under a Brouwer-homomorphism.

Summarizing, we have:

Corollary 3.11.

IPC =
⋂ {

Th(B) : B a finite weakly projective Brouwer algebra
}

=
⋂ {

ThH(H) : H a finite weakly projective Heyting algebra
}
.

4. A factor of the Muchnik lattice that captures IPC

In this section, we prove that there is a factor of Mw, obtained by dividing
Mw by a principal filter, that has IPC as its theory. Hence, we see that
the analogue of Skvortsova’s result (Theorem 2.9) holds for Mw. We will be
very liberal with notation, frequently confusing Muchnik degrees with their
representatives.
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The property of dd-like lattices (Definition 3.5) was used to characterize
the lattices that are isomorphic to an interval of Mw:

Theorem 4.1. (Terwijn [23]) For any finite distributive lattice L, the following

are equivalent:

(i) L is isomorphic to an interval in Mw;

(ii) L is not double diamond-like;

(iii) L does not have a double diamond-like lattice as a subinterval.

Let {Bn}n∈ω be the family of Brouwer algebras from Corollary 3.10. Since
Bn is not dd-like by Proposition 3.6, by Theorem 4.1 there are sets Xn and Yn

such that the interval [Xn,Yn] in Mw is isomorphic to Bn for every n. This
is an isomorphism of finite distributive lattices; hence, it is automatically an
isomorphism of Brouwer algebras.

It is useful to remind the reader of some of the details of the construction
in [23]. Let Jn = J(Bn) be the set of the nonzero join-irreducible elements of
Bn; since Bn is not dd-like, Jn is an initial segment of an upper semilattice.
Embed Jn as an interval of the Turing degrees (this can be done by a classical
result of Lachlan and Lebeuf [8], stating that for every Turing degree a, every
countable upper semilattice with least element is isomorphic to an interval of
the Turing degrees with bottom a). For every Turing degree in the range of this
embedding, choose a representative, as a function f ∈ ωω; for convenience, let
us identify Jn with the set of these chosen representatives. For every A ⊆ Jn,
let Â denote the elements of A that are !T -maximal, i.e., maximal with respect
to Turing reducibility.

Inspection of the proof of Theorem 3.11 in [23] shows that there is a set Zn

such that

Xn = Zn × Jn,

Yn = Zn ×
∏{

{f}′ : f ∈ Ĵn

}
. (1)

Furthermore, we have that Zn =
⋃

f∈Jn

Zf
n , where

Zf
n =

{
g ∈ {f}′ : g|T h for all covers h of f in Jn

}
. (2)

The sets Jn come from embedding results into the Turing degrees, and we have
rather great freedom in picking them. In particular, we may pick them such
that they satisfy that for every n ̸= m,

(∀f ∈ Jn) [{f} ̸#w Zm], (3)

and
f ∈ Ĵm

g ∈ Ĵn

h ∈ Jn

⎫
⎬

⎭
=⇒ f ⊕ h >T g. (4)

To obtain this, it is enough to embed as an interval of the Turing degrees the
upper semilattice J defined as follows: First, let U =

⋃
n{n} × Jn (where,

again, Jn = J(Bn)) and in U define (n, x) ! (m, y) if and only if n = m and,
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in Jn, x ! y; finally define J by adding a least element and a greatest element
to U . Clearly, J is a countable upper semilattice with least element, and thus
can be embedded as an interval of the Turing degrees: under this embedding,
each Jn is embedded as an interval of the Turing degrees, with the desired
properties.

Define

Z =
⋃

n∈ω
Zn,

X̂n = Z × Jn ≡w Xn × Z,

Ŷn = Z ×
∏{

{f}′ : f ∈ Ĵn

}
≡w Yn × Z.

Lemma 4.2. The interval [Xn,Yn] is isomorphic to the interval [X̂n, Ŷn].

Proof. Define a mapping from [Xn,Yn] to [Xn × Z,Yn × Z] by C 2→ C × Z.
By Lemma 2.7, the mapping is a surjective lattice-theoretic homomorphism.
We check that it is also injective: Suppose that C0, C1 ∈ [Xn,Yn] and that
C0 ×Z ≡w C1 ×Z. We claim that C0 #w C1 ×Zn: Suppose that g ∈ C0. Then
{g} #w Xn = Zn×Jn. If {g} #w Zn then clearly it can be mapped to C1×Zn.
If {g} ̸#w Zn, then we have {g} #w Jn, and it follows from (2) and the fact
that the Turing degrees of functions in Jn form an initial segment of the Turing
degrees, that g ≡T k for some k ∈ Jn. (To see this, suppose that {g} ̸#w Zn

and {g} #w Jn, and let f ∈ Jn be !T -maximal such that f !T g. If f ≡T g,
then the claim is true, so suppose that f <T g. Then g ∈ {f}′. There is a
cover h ∈ Jn of f such that g ̸ |T h, since otherwise g ∈ Zf

n , and hence g ∈ Zn,
contrary to assumption. If g !T h, then g ≡T k for some k ∈ Jn since the
Turing degrees of the elements of Jn are an initial segment. If h !T g, then
g ≡T h since we chose f ∈ Jn maximal. Hence, g has the same Turing degree of
some function in Jn.) But in this case, it follows from (3) and the assumption
C0 #w C1 × Z that {g} #w C1 × Zn. Hence, C0 #w C1 × Zn ≡w C1 (note that
Zn #w C1 since Yn #w C1), and symmetrically we have that C1 #w C0, hence
C0 ≡w C1. "

Now let Ŷ =
⋃

n∈ω Ŷn.

Lemma 4.3. Ŷ + X̂n ≡w Ŷn for every n.

Proof. The direction !w is immediate from Ŷ !w Ŷn and X̂n !w Ŷn. For the
other direction, suppose that g ∈ Ŷ and h ∈ X̂n. We have to show that g ⊕ h
computes some function in Ŷn. Suppose that g ∈ Ŷm. If n = m, then we are
done. If either g or h is in ⟨0⟩̂Z, then we are also done because ⟨0⟩̂Z ⊆ Ŷn.

In the remaining case, we have n ̸= m, h ∈ ⟨1⟩̂Jn, and g ∈ {f}′ for some
f ∈ Ĵm. Let l be any element of Ĵn. Then by (4), we have f ⊕ h >T l, hence
g ⊕ h #T f ⊕ h ∈ {l}′ #w Ŷn. "

Theorem 4.4. There exists a mass problem Ŷ such that

Th(Mw(!w Ŷ)) = IPC.
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Proof. Let X̂n, Ŷn, and Ŷ be as above. Since by Lemma 4.3, we have Ŷ+X̂n ≡w

Ŷn for every n, so by Lemma 2.6, we have that

Th
(
Mw(!w Ŷ)

)
⊆

⋂

n
Th

(
[X̂n, Ŷn]

)
=

⋂

n
Th(Bn) = IPC.

The equality Th
(
Mw(!w Ŷ)

)
= IPC follows since IPC ⊆ Th

(
Mw(!w Ŷ)

)

holds for any Ŷ. "

5. Mw as a Heyting algebra

For the dual of Mw, we have a similar result, but easier to prove and in fact
stronger: the result, and its consequences, listed below, were already noticed
in Sorbi [18], with only a sketched proof.

Let {Hn}n∈ω be the family of Heyting algebras from Corollary 3.9. The
following lemma is a reformulation of a result in [23], using Proposition 3.6.
The right-to left implication appeared also in [18].

Lemma 5.1. A finite distributive lattice is isomorphic to an initial segment

of the Muchnik lattice if and only if it is weakly projective, and 0 is meet-

irreducible.

Theorem 5.2. IPC = ThH(Mw(# 0′)).

Proof. For every weakly projective finite distributive lattice H, define H+ =
H + I1 (using the notation of Section 3.) Notice that H is isomorphic to a
factor of H+, obtained by dividing by the principal filter generated by 1H ,
that is, the image of the top element of H into H+. Since filters provide
congruences of Heyting algebras, we have by Lemma 2.4 (or rather, its dual
version for Heyting algebras) that ThH(H+) ⊆ ThH(H). It follows that

IPC =
⋂ {

ThH(H) : H finite, weakly projective, with join-irreducible 1
}
.

Suppose now that H is a finite, weakly projective distributive lattice, with
join-irreducible 1: let H− be such that H = (H−)+. Embed I1 + H− as
an initial segment of Mw, which is possible by Lemma 5.1. Let F be the
embedding, which is also a Heyting algebra embedding since the range of F is
an initial segment. Then the mapping

G(x) =

{
F (x), if x ∈ H−,

1Mw
, if x = 1H ,

is a Heyting embedding of H into Mw(#w 0′)). Thus, IPC = ThH(Mw(#w 0′))
by Lemma 2.4. "

A proof of the following result was already outlined in Sorbi [18].

Theorem 5.3. ThH(Mw) = Th(Mw) = Jan.
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Proof. Let us show that ThH(Mw) = Jan. For every Heyting algebra H, let
H+ = I1 +H. Let us say that a propositional formula is positive if it does not
contain the connective ¬, and for every Heyting algebra H, let Thpos

H (H) ={
ϕ ∈ ThH(H) : ϕ positive

}
. We claim that Thpos

H (H+) ⊆ Thpos
H (H). Namely,

one can show by induction on the complexity of a positive ϕ that for every
x ∈ Hn, pH

ϕ (x) = pH+
ϕ (x). (Here, ϕ has, say, n variables, and pH

ϕ and pH+
ϕ

denote the mappings ϕop : Hn → H and ϕop : (H+)n → H+, respectively,
as in Definition 2.3.) Notice also that for every Heyting algebra H and any
propositional formula α, we have that ¬α ∨ ¬¬α ∈ ThH(H+) (since the least
element of H+ is meet-irreducible), i.e., Jan ⊆ ThH(H+). Let H = Mw(#
0′)), so that H+ = Mw. By Theorem 5.2, we have IPC = ThH(H); hence,
IPC

pos = Thpos
H (H+) and ¬α ∨ ¬¬α ∈ ThH(H+). Therefore, one can apply a

classic result due to Jankov [5], stating that Jan is the ⊆-largest intermediate
propositional logic I such that IPC

pos = Ipos and ¬α ∨ ¬¬α ∈ I. Thus, we
also obtain the converse inclusion ThH(H+) ⊆ Jan.

The proof that Th(Mw) = Jan goes like this: let B = Mw(!w Ŷ), with Ŷ
as in Theorem 4.4. Dualizing the arguments which have been used above, we
obtain Thpos(B+) ⊆ Thpos(B), but then again by Jankov [5], Th(B+) = Jan,
and since B+ is Brouwer embeddable into Mw (use G : B+ −→ Mw which
extends the embedding of B into Mw, by G(1B+) = 1Mw

), we finally get that
Th(Mw) ⊆ Jan (by Lemma 2.4), and thus Th(Mw) = Jan since ¬α ∨ ¬¬α ∈
Th(Mw). "
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