Seminar on Models of Intuitionism

Hand-out lecture 11

11 May

1 Connectionally Closed Categories

Definition 1.1. A category C consists of a collection C_0 of objects and a collection C_1 of arrows (or morphisms) such that the following holds.

- Each arrow has a *domain* and a *codomain* which are objects; one writes $f: A \to B$ or $A \xrightarrow{f} B$ if A is the domain of the arrow f and B is its codomain.
- Given two arrows $A \xrightarrow{f} B \xrightarrow{g} C$, there is a composition $A \xrightarrow{g \circ f} C$ and composition is associative.
- For every object A there is an *identity arrow* $1_A : A \to A$, satisfying $1_A \circ g = g$ for every $g : B \to A$ and $f \circ 1_A = f$ for every $f : A \to B$.

Equationally,

$$f \circ 1_A = f$$
 for any $f \colon A \to B;$ (1)

$$1_B \circ g = g \qquad \qquad \text{for any } g \colon A \to B; \tag{2}$$

$$(h \circ g) \circ f = h \circ (g \circ f)$$
 for any $f \colon A \to B, g \colon B \to C$ and $h \colon C \to D$. (3)

Definition 1.2. A morphism $f: A \to B$ in C is an *isomorphism* if there is a morphism $g: B \to A$ such that $f \circ g = 1_B$ and $g \circ f = 1_A$.

Example 1.3. We have a category **Set** whose objects are sets and the arrows are functions between sets. Composition is ordinary function composition.

Example 1.4. Let (P, \leq) be a poset. We view P as a category whose objects are the elements of P and we have an arrow $p \to q$ iff $p \leq q$. Observe that arrows are unique in this category and that all isomorphisms are identities.

1.1 Categorical Constructions

From now on we will work in some fixed category C and (P, \leq) will always denote some fixed poset.

Definition 1.5. A *terminal object* T in C is an object such that there is exactly one arrow $A \to T$ for any object A in C.

Example 1.6. Singleton sets are terminal objects in the category Set.

Example 1.7. Note that $p \in P$ is terminal iff p is the greatest element of P.

Note that in general, a terminal object is unique up to isomorphism. (This is why category theorists usually speak of the terminal object in a category.) We will make an explicit choice and write t for the chosen terminal object and $!_A: A \to t$ for the unique arrow from A to t. We have the following equation

$$f = !_A \quad \text{for any } f \colon A \to t.$$
 (4)

Definition 1.8. A product of two objects A and B is an object $A \times B$ with morphisms $\pi_{A,B} \colon A \times B \to A \text{ and } \pi'_{A,B} \colon A \times B \to B \text{ (called projections) such that for any } f \colon C \to A \text{ and } f \colon C \to A \text{ and } f \colon C \to A \text{ and } f \to A \text{ and } f \colon C \to A \text{ and } f \to A \text{ and }$ $g: C \to B$ there is a unique arrow $\langle f, g \rangle: C \to A \times B$ making the following diagram commute

Definition 1.9. We say that C has (binary) products if a product of A and B exists for each pair of objects A and B in C.

Example 1.10. The cartesian product of two sets (with obvious projection maps) is a product in Set.

Example 1.11. The product of $p, q \in P$ in P is the greatest lower bound (with respect to \leq) of p and q. So we see that P has products iff (binary) meets exist in P.

Again, for two given fixed objects A and B a product of A and B is unique up to isomorphism. For each pair of objects A and B we will specify a product $A \times B$ together with projections $\pi_{A \times B}$ and $\pi'_{A \times B}$. The defining equations (with ommitted subscripts) read

$$\pi \circ \langle f, g \rangle = f$$
 for any $f: C \to A$ and $g: C \to B;$ (5)

$$f' \circ \langle f, g \rangle = g$$
 for any $f: C \to A$ and $g: C \to B$; (6)

$$\pi' \circ \langle f, g \rangle = g \qquad \text{for any } f: C \to A \text{ and } g: C \to B; \tag{6}$$
$$\langle \pi \circ h, \pi' \circ h \rangle = h \qquad \text{for any } h: C \to A \times B. \tag{7}$$

Similarly (or really, dually), we have the notion of a *coproduct*. (This is a product in \mathcal{C}^{op} .)

Definition 1.12. A coproduct of two objects A and B is an object A + B with morphisms $\kappa_{A,B}: A \to A + B$ and $\kappa'_{A,B}: B \to A + B$ such that for any $f: A \to C$ and $g: B \to C$ there is a unique arrow $[f,g]: A + B \to C$ making the following diagram commute

Definition 1.13. The category \mathcal{C} is said to have (binary) coproducts if a coproduct of A and B exists in \mathcal{C} for any pair of objects A and B in \mathcal{C} .

Example 1.14. In Set, a coproduct of two sets is their disjoint union with the obvious inclusions.

Example 1.15. The coproduct of $p, q \in P$ in P is the least upper bound (with respect to \leq) of p and q. So P has coproducts iff P has joins. Furthermore, we see that P is a lattice iff P has products and coproducts.

Again, we specify for each pair of objects A and B a coproduct A+B together with morphisms $\kappa_{A,B}$ and $\kappa'_{A,B}$. The defining equations are

$$[f,g] \circ \kappa = f \quad \text{for any } f \colon A \to C \text{ and } g \colon B \to C; \tag{8}$$

$$[f,g] \circ \kappa' = g \quad \text{for any } f \colon A \to C \text{ and } g \colon B \to C; \tag{9}$$

$$[h \circ \kappa, h \circ \kappa'] = h \quad \text{for any } h \colon A + B \to C.$$
⁽¹⁰⁾

Definition 1.16. Assume that our fixed category C has products. An *exponential* of two objects A and B is an object B^A with an arrow $\varepsilon_{A,B} \colon A \times B^A \to B$ such that for any $f \colon A \times C \to B$ there is a unique arrow $\tilde{f} \colon C \to B^A$ making the following diagram commute

Example 1.17. In Set, given two sets X and Y, the set Y^X of all functions from X to Y is an exponential of X and Y. The evaluation arrow $\varepsilon_{X,Y} \colon X \times Y^X \to Y$ is given by $(x,g) \mapsto g(x)$. Further, given $f \colon X \times Z \to Y$, one may construct $\tilde{f} \colon Z \to Y^X$ by $z \mapsto (x \mapsto f(x, z))$.

Example 1.18. For $p, q, r \in P$, we see that the exponential q^p of p and q should satisfy $p \wedge r \leq q$ iff $r \leq q^p$. Hence, if P is a Heyting algebra, then $p \to q$ is the exponential of p and q.

Assuming we have specified products in C, we specify for each pair of objects A and B an exponential B^A together with an evaluation morphism $\varepsilon_{A,B}$ satisfying the equations

$$\varepsilon \circ \langle \pi, \tilde{h} \circ \pi' \rangle = h$$
 for any $h: A \times C \to B;$ (11)

$$(\varepsilon \circ \langle \pi, k \circ \pi' \rangle)^{\sim} = k \quad \text{for any } k \colon C \to B^A.$$
 (12)

1.2 Connectionally Closed Categories

Definition 1.19. A category is called *cartesian closed* if it has a terminal object, binary products and exponentials. We call a category *connectionally closed* (c.c.) if it is cartesian closed and has binary coproducts.

Example 1.20. The category Set is c.c. as is any Heyting algebra H (seen as a category). In the homework, you will see another example of a c.c. category. This category will play an important role next week.

Definition 1.21. A functor F between categories C and D consists of operations $F_0: C_0 \to D_0$ and $F_1: C_1 \to D_1$ such that for each arrow $f: A \to B$ in C we have $F_1(f): F_0(A) \to F_0(B)$. Furthermore F should respect composition and identities, i.e.

- for $A \xrightarrow{f} B \xrightarrow{g} C$, we have $F_1(g \circ f) = F_1(g) \circ F_1(f)$;
- for every object A in C we have $F_1(1_A) = 1_{F_0(A)}$.

We usually just write F instead of F_0 and F_1 .

Definition 1.22. A functor between two c.c. categories is called a *c.c. functor* if it preserves terminal objects, binary (co)products and exponentials (e.g. the functor takes a product diagram to a product diagram). Such a functor is called a *c.c. morphism* if we have specified operations in both categories and F preserves our specified terminal object, specified binary (co)products and specified exponentials (e.g. the functor takes our specific terminal object to the chosen terminal object in the target category).

2 Category of Proofs

In the following:

- \mathcal{L} is a set of propositional atoms.
- Formulae are built from \mathcal{L} using \top , \land , \lor and \rightarrow (but not \bot).
- An *entailment* is an expression of the form $A \Rightarrow B$, where A and B are formulae.
- A theory T is a set of entailments.

Given a theory T, we can build *deductions* using the following rules. As indicated on the right, every deduction is assigned a unique term.

Rule	Term
$\boxed{\qquad A \Rightarrow A} \text{ TAUT}$	1_A
$\boxed{\begin{array}{c} A \stackrel{f}{\Rightarrow} B & B \stackrel{q}{\Rightarrow} C \\ \hline A \Rightarrow C & \end{array} \text{CUT}}$	$g \circ f$
$\hline A \Rightarrow \top \text{ TRUE}$	$!_A$
$\boxed{A \land B \Rightarrow A} \land L1$	$\pi_{A,B}$
$A \land B \Rightarrow B \land L2$	$\pi'_{A,B}$
$ \begin{array}{c} \underline{C \stackrel{f}{\Rightarrow} A C \stackrel{g}{\Rightarrow} B} \\ \hline C \Rightarrow A \land B \end{array} \land \mathbf{R} \end{array}$	$\langle f,g \rangle$
$\overline{A \Rightarrow A \lor B} \lor \mathbf{R1}$	$\kappa_{A,B}$
$\boxed{B \Rightarrow A \lor B} \lor \mathbb{R}^2$	$\kappa'_{A,B}$

$\boxed{\begin{array}{c} A \stackrel{f}{\Rightarrow} C & B \stackrel{g}{\Rightarrow} C \\ \hline A \lor B \Rightarrow C & \lor L \end{array}}$	[f,g]
$\boxed{A \land (A \to B) \Rightarrow B} \to \mathbf{L}$	$\varepsilon_{A,B}$
$ \begin{array}{c} \underline{A \land C \xrightarrow{f} B} \\ \hline C \Rightarrow A \to B \end{array} \to \mathbf{R} \end{array}$	$ ilde{f}$
$\boxed{ \overline{\tau} \ ^{\mathrm{T}} \ (\tau \in T)}$	τ

For each of the twelve equations for a c.c. category, we identify the deductions denoted by both sides of the equations. For example, $f \circ 1_A = f$ for $f: A \to B$ identifies

$$\frac{\overline{A \Rightarrow A} \stackrel{\text{TAUT}}{A \Rightarrow B} A \stackrel{f}{\Rightarrow} B}{A \Rightarrow B} \text{CUT}$$

with $A \stackrel{f}{\Rightarrow} B$ itself.

- **Definition 2.1.** (i) Two deductions are considered *equivalent* if the one can be constructed out of the other using a sequence of the above mentioned identifications.
 - (ii) The category of proofs $\mathcal{F}_{\mathcal{L}}(T)$ has
 - as objects the \mathcal{L} -formulae;
 - as arrows $A \rightarrow B$ the T-deductions with $A \Rightarrow B$ as conclusion, modulo equivalence.

Proposition 2.2. $\mathcal{F}_{\mathcal{L}}(T)$ is a c.c. category with specified operations.

2.1 Free Constructions

Proposition 2.3. Suppose \mathcal{D} is a c.c. category with specified operations and that for all $p \in \mathcal{L}$, an object f(p) of \mathcal{D} is given. Then there exists a unique c.c. morphism $F: \mathcal{F}_{\mathcal{L}}(\emptyset) \to \mathcal{D}$ such that F(p) = f(p) for all $p \in \mathcal{L}$.

We write I for the obvious inclusion functor $\mathcal{F}_{\mathcal{L}}(\emptyset) \to \mathcal{F}_{\mathcal{L}}(T)$. We write $\tau \in T$ as $a(\tau) \Rightarrow c(\tau)$.

Proposition 2.4. Suppose $G: \mathcal{F}_{\mathcal{L}}(\emptyset) \to \mathcal{D}$ is c.c. morphism, and that for all $\tau \in T$, an arrow $\hat{\tau}: G(a(\tau)) \to G(c(\tau))$ of \mathcal{D} is given. Then there exists a unique c.c. morphism $H: \mathcal{F}_{\mathcal{L}}(T) \to \mathcal{D}$ such that $H(\tau) = \hat{\tau}$ for all $\tau \in T$, and $H \circ I = G$.

2.2 Projectivity

- **Definition 2.5.** (i) A c.c. morphism $G: \mathcal{D} \to \mathcal{E}$ is called *surjective* if G_0 is surjective, and for all objects X and Y of \mathcal{D} , the function $G_1: \mathcal{D}(X, Y) \to \mathcal{E}(G(X), G(Y))$ is surjective.
 - (ii) A c.c. category \mathcal{C} with specified operations is called *projective* if for every surjective c.c. morphism $G: \mathcal{D} \to \mathcal{E}$ and every c.c. morphism $F: \mathcal{C} \to \mathcal{E}$, there exists a (not necessarily unique) c.c. morphism $J: \mathcal{C} \to \mathcal{D}$ such that $G \circ J = F$.

Proposition 2.6. $\mathcal{F}_{\mathcal{L}}(T)$ is projective.