Seminar on Models of Intuitionism

Hand-out lecture 11
11 May

1 Connectionally Closed Categories

Definition 1.1. A category \mathcal{C} consists of a collection \mathcal{C}_{0} of objects and a collection \mathcal{C}_{1} of arrows (or morphisms) such that the following holds.

- Each arrow has a domain and a codomain which are objects; one writes $f: A \rightarrow B$ or $A \xrightarrow{f} B$ if A is the domain of the arrow f and B is its codomain.
- Given two arrows $A \xrightarrow{f} B \xrightarrow{g} C$, there is a composition $A \xrightarrow{g \circ f} C$ and composition is associative.
- For every object A there is an identity arrow $1_{A}: A \rightarrow A$, satisfying $1_{A} \circ g=g$ for every $g: B \rightarrow A$ and $f \circ 1_{A}=f$ for every $f: A \rightarrow B$.
Equationally,

$$
\begin{array}{ll}
f \circ 1_{A}=f & \text { for any } f: A \rightarrow B ; \\
1_{B} \circ g=g & \text { for any } g: A \rightarrow B ; \\
(h \circ g) \circ f=h \circ(g \circ f) & \text { for any } f: A \rightarrow B, g: B \rightarrow C \text { and } h: C \rightarrow D . \tag{3}
\end{array}
$$

Definition 1.2. A morphism $f: A \rightarrow B$ in \mathcal{C} is an isomorphism if there is a morphism $g: B \rightarrow A$ such that $f \circ g=1_{B}$ and $g \circ f=1_{A}$.

Example 1.3. We have a category Set whose objects are sets and the arrows are functions between sets. Composition is ordinary function composition.

Example 1.4. Let (P, \leq) be a poset. We view P as a category whose objects are the elements of P and we have an arrow $p \rightarrow q$ iff $p \leq q$. Observe that arrows are unique in this category and that all isomorphisms are identities.

1.1 Categorical Constructions

From now on we will work in some fixed category \mathcal{C} and (P, \leq) will always denote some fixed poset.

Definition 1.5. A terminal object T in \mathcal{C} is an object such that there is exactly one arrow $A \rightarrow T$ for any object A in \mathcal{C}.

Example 1.6. Singleton sets are terminal objects in the category Set.
Example 1.7. Note that $p \in P$ is terminal iff p is the greatest element of P.

Note that in general, a terminal object is unique up to isomorphism. (This is why category theorists usually speak of the terminal object in a category.) We will make an explicit choice and write t for the chosen terminal object and $!_{A}: A \rightarrow t$ for the unique arrow from A to t. We have the following equation

$$
\begin{equation*}
f=!_{A} \quad \text { for any } f: A \rightarrow t \tag{4}
\end{equation*}
$$

Definition 1.8. A product of two objects A and B is an object $A \times B$ with morphisms $\pi_{A, B}: A \times B \rightarrow A$ and $\pi_{A, B}^{\prime}: A \times B \rightarrow B$ (called projections) such that for any $f: C \rightarrow A$ and $g: C \rightarrow B$ there is a unique arrow $\langle f, g\rangle: C \rightarrow A \times B$ making the following diagram commute

Definition 1.9. We say that \mathcal{C} has (binary) products if a product of A and B exists for each pair of objects A and B in \mathcal{C}.

Example 1.10. The cartesian product of two sets (with obvious projection maps) is a product in Set.

Example 1.11. The product of $p, q \in P$ in P is the greatest lower bound (with respect to $\leq)$ of p and q. So we see that P has products iff (binary) meets exist in P.

Again, for two given fixed objects A and B a product of A and B is unique up to isomorphism. For each pair of objects A and B we will specify a product $A \times B$ together with projections $\pi_{A \times B}$ and $\pi_{A \times B}^{\prime}$. The defining equations (with ommited subscripts) read

$$
\begin{array}{lr}
\pi \circ\langle f, g\rangle=f & \text { for any } f: C \rightarrow A \text { and } g: C \rightarrow B ; \\
\pi^{\prime} \circ\langle f, g\rangle=g & \text { for any } f: C \rightarrow A \text { and } g: C \rightarrow B ; \\
\left\langle\pi \circ h, \pi^{\prime} \circ h\right\rangle=h & \text { for any } h: C \rightarrow A \times B \tag{7}
\end{array}
$$

Similarly (or really, dually), we have the notion of a coproduct. (This is a product in $\mathcal{C}^{\text {op }}$.)
Definition 1.12. A coproduct of two objects A and B is an object $A+B$ with morphisms $\kappa_{A, B}: A \rightarrow A+B$ and $\kappa_{A, B}^{\prime}: B \rightarrow A+B$ such that for any $f: A \rightarrow C$ and $g: B \rightarrow C$ there is a unique arrow $[f, g]: A+B \rightarrow C$ making the following diagram commute

Definition 1.13. The category \mathcal{C} is said to have (binary) coproducts if a coproduct of A and B exists in \mathcal{C} for any pair of objects A and B in \mathcal{C}.

Example 1.14. In Set, a coproduct of two sets is their disjoint union with the obvious inclusions.

Example 1.15. The coproduct of $p, q \in P$ in P is the least upper bound (with respect to \leq) of p and q. So P has coproducts iff P has joins. Furthermore, we see that P is a lattice iff P has products and coproducts.

Again, we specify for each pair of objects A and B a coproduct $A+B$ together with morphisms $\kappa_{A, B}$ and $\kappa_{A, B}^{\prime}$. The defining equations are

$$
\begin{align*}
{[f, g] \circ \kappa=f } & \text { for any } f: A \rightarrow C \text { and } g: B \rightarrow C ; \tag{8}\\
{[f, g] \circ \kappa^{\prime}=g } & \text { for any } f: A \rightarrow C \text { and } g: B \rightarrow C ; \tag{9}\\
{\left[h \circ \kappa, h \circ \kappa^{\prime}\right]=h } & \text { for any } h: A+B \rightarrow C . \tag{10}
\end{align*}
$$

Definition 1.16. Assume that our fixed category \mathcal{C} has products. An exponential of two objects A and B is an object B^{A} with an arrow $\varepsilon_{A, B}: A \times B^{A} \rightarrow B$ such that for any $f: A \times C \rightarrow B$ there is a unique arrow $\tilde{f}: C \rightarrow B^{A}$ making the following diagram commute

Example 1.17. In Set, given two sets X and Y, the set Y^{X} of all functions from X to Y is an exponential of X and Y. The evaluation arrow $\varepsilon_{X, Y}: X \times Y^{X} \rightarrow Y$ is given by $(x, g) \mapsto g(x)$. Further, given $f: X \times Z \rightarrow Y$, one may construct $\tilde{f}: Z \rightarrow Y^{X}$ by $z \mapsto(x \mapsto f(x, z))$.

Example 1.18. For $p, q, r \in P$, we see that the exponential q^{p} of p and q should satisfy $p \wedge r \leq q$ iff $r \leq q^{p}$. Hence, if P is a Heyting algebra, then $p \rightarrow q$ is the exponential of p and q.

Assuming we have specified products in \mathcal{C}, we specify for each pair of objects A and B an exponential B^{A} together with an evaluation morphism $\varepsilon_{A, B}$ satisfying the equations

$$
\begin{array}{ll}
\varepsilon \circ\left\langle\pi, \tilde{h} \circ \pi^{\prime}\right\rangle=h & \text { for any } h: A \times C \rightarrow B ; \\
\left(\varepsilon \circ\left\langle\pi, k \circ \pi^{\prime}\right\rangle\right)^{\sim}=k & \text { for any } k: C \rightarrow B^{A} . \tag{12}
\end{array}
$$

1.2 Connectionally Closed Categories

Definition 1.19. A category is called cartesian closed if it has a terminal object, binary products and exponentials. We call a category connectionally closed (c.c.) if it is cartesian closed and has binary coproducts.

Example 1.20. The category Set is c.c. as is any Heyting algebra H (seen as a category). In the homework, you will see another example of a c.c. category. This category will play an important role next week.

Definition 1.21. A functor F between categories \mathcal{C} and \mathcal{D} consists of operations $F_{0}: \mathcal{C}_{0} \rightarrow$ \mathcal{D}_{0} and $F_{1}: \mathcal{C}_{1} \rightarrow \mathcal{D}_{1}$ such that for each arrow $f: A \rightarrow B$ in \mathcal{C} we have $F_{1}(f): F_{0}(A) \rightarrow F_{0}(B)$. Furthermore F should respect composition and identities, i.e.

- for $A \xrightarrow{f} B \xrightarrow{g} C$, we have $F_{1}(g \circ f)=F_{1}(g) \circ F_{1}(f)$;
- for every object A in \mathcal{C} we have $F_{1}\left(1_{A}\right)=1_{F_{0}(A)}$.

We usually just write F instead of F_{0} and F_{1}.
Definition 1.22. A functor between two c.c. categories is called a c.c. functor if it preserves terminal objects, binary (co)products and exponentials (e.g. the functor takes a product diagram to a product diagram). Such a functor is called a c.c. morphism if we have specified operations in both categories and F preserves our specified terminal object, specified binary (co)products and specified exponentials (e.g. the functor takes our specific terminal object to the chosen terminal object in the target category).

2 Category of Proofs

In the following:

- \mathcal{L} is a set of propositional atoms.
- Formulae are built from \mathcal{L} using \top, \wedge, \vee and \rightarrow (but not \perp).
- An entailment is an expression of the form $A \Rightarrow B$, where A and B are formulae.
- A theory T is a set of entailments.

Given a theory T, we can build deductions using the following rules. As indicated on the right, every deduction is assigned a unique term.

Rule	Term
$A \Rightarrow A{ }^{\text {TaUT }}$	1_{A}
$\frac{A \stackrel{f}{\Rightarrow} B \quad B \stackrel{g}{\Rightarrow} C}{A \Rightarrow C} \text { CUT }$	$g \circ f$
$A \Rightarrow \mathrm{~T}^{\text {TRUE }}$	$!{ }_{A}$
$\overline{A \wedge B \Rightarrow A}^{\wedge \mathrm{L} 1}$	$\pi_{A, B}$
$A \wedge B \Rightarrow B^{\wedge}{ }^{\text {2 }}$	$\pi_{A, B}^{\prime}$
$\frac{C \stackrel{f}{\Rightarrow} A \quad C \stackrel{g}{\Rightarrow} B}{C \Rightarrow A \wedge B} \wedge \mathrm{R}$	$\langle f, g\rangle$
$A \Rightarrow A \vee B$	$\kappa_{A, B}$
$B \Rightarrow A \vee B$	$\kappa_{A, B}^{\prime}$

$\frac{A \stackrel{f}{\Rightarrow} C \quad B \stackrel{g}{\Rightarrow} C}{A \vee B \Rightarrow C} \vee \mathrm{~L}$	$[f, g]$
$\frac{A \wedge(A \rightarrow B) \Rightarrow B}{A} \rightarrow \mathrm{~L}$	$\varepsilon_{A, B}$
$\frac{A \wedge C \stackrel{f}{\Rightarrow} B}{C \Rightarrow A \rightarrow B} \rightarrow \mathrm{R}$	\tilde{f}
$\bar{\tau}^{\mathrm{T}}(\tau \in T)$	τ

For each of the twelve equations for a c.c. category, we identify the deductions denoted by both sides of the equations. For example, $f \circ 1_{A}=f$ for $f: A \rightarrow B$ identifies

$$
\frac{\overline{A \Rightarrow A}^{\text {TAUT }} \quad A \stackrel{f}{\Rightarrow} B}{A \Rightarrow B} \text { CUT }
$$

with $A \stackrel{f}{\Rightarrow} B$ itself.
Definition 2.1. (i) Two deductions are considered equivalent if the one can be constructed out of the other using a sequence of the above mentioned identifications.
(ii) The category of proofs $\mathcal{F}_{\mathcal{L}}(T)$ has

- as objects the \mathcal{L}-formulae;
- as arrows $A \rightarrow B$ the T-deductions with $A \Rightarrow B$ as conclusion, modulo equivalence.

Proposition 2.2. $\mathcal{F}_{\mathcal{L}}(T)$ is a c.c. category with specified operations.

2.1 Free Constructions

Proposition 2.3. Suppose \mathcal{D} is a c.c. category with specified operations and that for all $p \in \mathcal{L}$, an object $f(p)$ of \mathcal{D} is given. Then there exists a unique c.c. morphism $F: \mathcal{F}_{\mathcal{L}}(\emptyset) \rightarrow \mathcal{D}$ such that $F(p)=f(p)$ for all $p \in \mathcal{L}$.

We write I for the obvious inclusion functor $\mathcal{F}_{\mathcal{L}}(\emptyset) \rightarrow \mathcal{F}_{\mathcal{L}}(T)$. We write $\tau \in T$ as $a(\tau) \Rightarrow c(\tau)$.

Proposition 2.4. Suppose $G: \mathcal{F}_{\mathcal{L}}(\emptyset) \rightarrow \mathcal{D}$ is c.c. morphism, and that for all $\tau \in T$, an arrow $\hat{\tau}: G(a(\tau)) \rightarrow G(c(\tau))$ of \mathcal{D} is given. Then there exists a unique c.c. morphism $H: \mathcal{F}_{\mathcal{L}}(T) \rightarrow$ \mathcal{D} such that $H(\tau)=\hat{\tau}$ for all $\tau \in T$, and $H \circ I=G$.

2.2 Projectivity

Definition 2.5. (i) A c.c. morphism $G: \mathcal{D} \rightarrow \mathcal{E}$ is called surjective if G_{0} is surjective, and for all objects X and Y of \mathcal{D}, the function $G_{1}: \mathcal{D}(X, Y) \rightarrow \mathcal{E}(G(X), G(Y))$ is surjective.
(ii) A c.c. category \mathcal{C} with specified operations is called projective if for every surjective c.c. morphism $G: \mathcal{D} \rightarrow \mathcal{E}$ and every c.c. morphism $F: \mathcal{C} \rightarrow \mathcal{E}$, there exists a (not necessarily unique) c.c. morphism $J: \mathcal{C} \rightarrow \mathcal{D}$ such that $G \circ J=F$.

Proposition 2.6. $\mathcal{F}_{\mathcal{L}}(T)$ is projective.

