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11 May

1 Connectionally Closed Categories

Definition 1.1. A category C consists of a collection C0 of objects and a collection C1 of
arrows (or morphisms) such that the following holds.

• Each arrow has a domain and a codomain which are objects; one writes f : A → B or

A
f−→ B if A is the domain of the arrow f and B is its codomain.

• Given two arrows A
f−→ B

g−→ C, there is a composition A
g◦f−−→ C and composition is

associative.

• For every object A there is an identity arrow 1A : A→ A, satisfying 1A ◦g = g for every
g : B → A and f ◦ 1A = f for every f : A→ B.

Equationally,

f ◦ 1A = f for any f : A→ B; (1)

1B ◦ g = g for any g : A→ B; (2)

(h ◦ g) ◦ f = h ◦ (g ◦ f) for any f : A→ B, g : B → C and h : C → D. (3)

Definition 1.2. A morphism f : A → B in C is an isomorphism if there is a morphism
g : B → A such that f ◦ g = 1B and g ◦ f = 1A.

Example 1.3. We have a category Set whose objects are sets and the arrows are functions
between sets. Composition is ordinary function composition.

Example 1.4. Let (P,≤) be a poset. We view P as a category whose objects are the elements
of P and we have an arrow p→ q iff p ≤ q. Observe that arrows are unique in this category
and that all isomorphisms are identities.

1.1 Categorical Constructions

From now on we will work in some fixed category C and (P,≤) will always denote some fixed
poset.

Definition 1.5. A terminal object T in C is an object such that there is exactly one arrow
A→ T for any object A in C.

Example 1.6. Singleton sets are terminal objects in the category Set.

Example 1.7. Note that p ∈ P is terminal iff p is the greatest element of P .
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Note that in general, a terminal object is unique up to isomorphism. (This is why category
theorists usually speak of the terminal object in a category.) We will make an explicit choice
and write t for the chosen terminal object and !A : A → t for the unique arrow from A to t.
We have the following equation

f = !A for any f : A→ t. (4)

Definition 1.8. A product of two objects A and B is an object A × B with morphisms
πA,B : A×B → A and π′A,B : A×B → B (called projections) such that for any f : C → A and
g : C → B there is a unique arrow 〈f, g〉 : C → A×B making the following diagram commute

A×B

A B

C

πA,B π′
A,B

gf

〈f,g〉

Definition 1.9. We say that C has (binary) products if a product of A and B exists for each
pair of objects A and B in C.

Example 1.10. The cartesian product of two sets (with obvious projection maps) is a product
in Set.

Example 1.11. The product of p, q ∈ P in P is the greatest lower bound (with respect to
≤) of p and q. So we see that P has products iff (binary) meets exist in P .

Again, for two given fixed objects A and B a product of A and B is unique up to isomorphism.
For each pair of objects A and B we will specify a product A× B together with projections
πA×B and π′A×B. The defining equations (with ommited subscripts) read

π ◦ 〈f, g〉 = f for any f : C → A and g : C → B; (5)

π′ ◦ 〈f, g〉 = g for any f : C → A and g : C → B; (6)

〈π ◦ h, π′ ◦ h〉 = h for any h : C → A×B. (7)

Similarly (or really, dually), we have the notion of a coproduct. (This is a product in Cop.)

Definition 1.12. A coproduct of two objects A and B is an object A + B with morphisms
κA,B : A → A + B and κ′A,B : B → A + B such that for any f : A → C and g : B → C there
is a unique arrow [f, g] : A+B → C making the following diagram commute

A+B

A B

C

[f,g]

κA,B

f

κ′A,B

g

Definition 1.13. The category C is said to have (binary) coproducts if a coproduct of A and
B exists in C for any pair of objects A and B in C.
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Example 1.14. In Set, a coproduct of two sets is their disjoint union with the obvious
inclusions.

Example 1.15. The coproduct of p, q ∈ P in P is the least upper bound (with respect to ≤)
of p and q. So P has coproducts iff P has joins. Furthermore, we see that P is a lattice iff P
has products and coproducts.

Again, we specify for each pair of objects A and B a coproduct A+B together with morphisms
κA,B and κ′A,B. The defining equations are

[f, g] ◦ κ = f for any f : A→ C and g : B → C; (8)

[f, g] ◦ κ′ = g for any f : A→ C and g : B → C; (9)

[h ◦ κ, h ◦ κ′] = h for any h : A+B → C. (10)

Definition 1.16. Assume that our fixed category C has products. An exponential of two
objects A and B is an object BA with an arrow εA,B : A × BA → B such that for any
f : A× C → B there is a unique arrow f̃ : C → BA making the following diagram commute

A× C B

A×BA

f

〈π,f̃◦π′〉 εA,B

Example 1.17. In Set, given two sets X and Y , the set Y X of all functions from X to Y is an
exponential of X and Y . The evaluation arrow εX,Y : X×Y X → Y is given by (x, g) 7→ g(x).
Further, given f : X × Z → Y , one may construct f̃ : Z → Y X by z 7→ (x 7→ f(x, z)).

Example 1.18. For p, q, r ∈ P , we see that the exponential qp of p and q should satisfy
p ∧ r ≤ q iff r ≤ qp. Hence, if P is a Heyting algebra, then p→ q is the exponential of p and
q.

Assuming we have specified products in C, we specify for each pair of objects A and B an
exponential BA together with an evaluation morphism εA,B satisfying the equations

ε ◦ 〈π, h̃ ◦ π′〉 = h for any h : A× C → B; (11)

(ε ◦ 〈π, k ◦ π′〉)∼ = k for any k : C → BA. (12)

1.2 Connectionally Closed Categories

Definition 1.19. A category is called cartesian closed if it has a terminal object, binary
products and exponentials. We call a category connectionally closed (c.c.) if it is cartesian
closed and has binary coproducts.

Example 1.20. The category Set is c.c. as is any Heyting algebra H (seen as a category).
In the homework, you will see another example of a c.c. category. This category will play an
important role next week.
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Definition 1.21. A functor F between categories C and D consists of operations F0 : C0 →
D0 and F1 : C1 → D1 such that for each arrow f : A→ B in C we have F1(f) : F0(A)→ F0(B).
Furthermore F should respect composition and identities, i.e.

• for A
f−→ B

g−→ C, we have F1(g ◦ f) = F1(g) ◦ F1(f);

• for every object A in C we have F1(1A) = 1F0(A).

We usually just write F instead of F0 and F1.

Definition 1.22. A functor between two c.c. categories is called a c.c. functor if it preserves
terminal objects, binary (co)products and exponentials (e.g. the functor takes a product
diagram to a product diagram). Such a functor is called a c.c. morphism if we have specified
operations in both categories and F preserves our specified terminal object, specified binary
(co)products and specified exponentials (e.g. the functor takes our specific terminal object to
the chosen terminal object in the target category).

2 Category of Proofs

In the following:

• L is a set of propositional atoms.

• Formulae are built from L using >, ∧, ∨ and → (but not ⊥).

• An entailment is an expression of the form A⇒ B, where A and B are formulae.

• A theory T is a set of entailments.

Given a theory T , we can build deductions using the following rules. As indicated on the
right, every deduction is assigned a unique term.

Rule Term

TAUT
A⇒ A 1A

A
f⇒ B B

g⇒ C
CUT

A⇒ C
g ◦ f

TRUE
A⇒> !A

∧L1
A ∧B ⇒ A πA,B

∧L2
A ∧B ⇒ B π′A,B

C
f⇒ A C

g⇒ B ∧R
C ⇒ A ∧B

〈f, g〉

∨R1
A⇒ A ∨B κA,B

∨R2
B ⇒ A ∨B κ′A,B
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A
f⇒ C B

g⇒ C ∨L
A ∨B ⇒ C

[f, g]

→L
A ∧ (A→ B)⇒ B εA,B

A ∧ C f⇒ B →R
C ⇒ A→ B

f̃

Tτ (τ ∈ T ) τ

For each of the twelve equations for a c.c. category, we identify the deductions denoted by
both sides of the equations. For example, f ◦ 1A = f for f : A→ B identifies

TAUT
A⇒ A A

f⇒ B
CUT

A⇒ B

with A
f⇒ B itself.

Definition 2.1. (i) Two deductions are considered equivalent if the one can be constructed
out of the other using a sequence of the above mentioned identifications.

(ii) The category of proofs FL(T ) has

– as objects the L-formulae;

– as arrows A→ B the T -deductions with A⇒ B as conclusion, modulo equivalence.

Proposition 2.2. FL(T ) is a c.c. category with specified operations.

2.1 Free Constructions

Proposition 2.3. Suppose D is a c.c. category with specified operations and that for all
p ∈ L, an object f(p) of D is given. Then there exists a unique c.c. morphism F : FL(∅)→ D
such that F (p) = f(p) for all p ∈ L.

We write I for the obvious inclusion functor FL(∅)→ FL(T ). We write τ ∈ T as a(τ)⇒ c(τ).

Proposition 2.4. Suppose G : FL(∅)→ D is c.c. morphism, and that for all τ ∈ T , an arrow
τ̂ : G(a(τ))→ G(c(τ)) of D is given. Then there exists a unique c.c. morphism H : FL(T )→
D such that H(τ) = τ̂ for all τ ∈ T , and H ◦ I = G.

FL(∅) D

FL(T )

G

I H
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2.2 Projectivity

Definition 2.5. (i) A c.c. morphism G : D → E is called surjective if G0 is surjective, and
for all objects X and Y of D, the function G1 : D(X,Y )→ E(G(X), G(Y )) is surjective.

(ii) A c.c. category C with specified operations is called projective if for every surjective c.c.
morphism G : D → E and every c.c. morphism F : C → E , there exists a (not necessarily
unique) c.c. morphism J : C → D such that G ◦ J = F .

C

D E
J

F

G

Proposition 2.6. FL(T ) is projective.
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