1 Beth Models

Note: the numbering for definitions, theorems, etc. directly corresponds to the numbering used in *Constructivism in Mathematics: An Introduction, Volume II*, 1988, ch. 13.

1.1 Introduction

Definition 1.1. A *Beth model* for a relational language \mathscr{L} is a quadruple $\mathscr{B} = (K, \preceq, D, \Vdash)$ such that

- (i) (K, \preceq) is a spread,
- (ii) *D* is a domain function assigning to each node $k \in K$ a non-empty set D(k) such that $k \leq k'$ implies $D(k) \subseteq D(k')$,
- (iii) the forcing relation \Vdash is a binary relation between nodes of *K* and atomic sentences *P* such that
 - B1. $k \Vdash P \iff \forall \alpha \in k \exists m : \bar{\alpha}(m) \Vdash P \text{ and } D(k) \text{ contains the constants in } P$, $k \nvDash \bot \text{ for all } k \in K$, B2. $k \Vdash A \land B \iff k \Vdash A \text{ and } k \Vdash B$, B3. $k \Vdash A \lor B \iff \forall \alpha \in k \exists n : \bar{\alpha}(n) \Vdash A \text{ or } \bar{\alpha}(n) \Vdash B$, B4. $k \Vdash A \to B \iff \forall k' \succeq k : k' \Vdash A \text{ implies } k' \Vdash B$, B5. $k \Vdash \exists x A(x) \iff \forall \alpha \in k \exists n \exists d \in D(\bar{\alpha}(n)) : \bar{\alpha}(n) \Vdash A(d)$, B6. $k \Vdash \forall x A(x) \iff \forall k' \succeq k \forall d \in D(k') : k' \Vdash A(d)$.

In this definition α ranges over the infinite branches of (K, \preceq) .

If (K, \preceq) is a fan, we can, instead of B1, B3, B5, use the following, stronger conditions:

B1' $k \Vdash P \iff \exists z \forall k' \succeq_z k \exists k'' \preceq k' : k'' \Vdash P$ B2' $k \Vdash A \lor B \iff \exists z \forall k' \succeq_z k : k' \Vdash A \text{ or } k' \Vdash B$ B3' $k \Vdash \exists x A(x) \iff \exists z \forall k' \succeq_z k \exists d \in D(k') : k' \Vdash A(d)$

We can also liberalize the definition of Beth models by allowing (K, \leq) to be an arbitrary tree instead of a spread, i.e. we no longer require each $k \in K$ to have a \leq -successor. This permits Beth models to be finite, with quantification over infinite branches α replaced by quantification over the \leq -maximal nodes in the tree. Let us refer to these as **liberalized Beth models**.

1.2 Relation to Kripke Models

Definition 1.5. Let $\mathscr{K} = (K, \preceq, D, \Vdash)$ be a Kripke model. We associate to this Kripke model a Beth model $\mathscr{K}' = (K', \preceq', D', \Vdash')$ in the following manner:

- (i) K' consists of all finite non-decreasing sequences of (K, \preceq) ,
- (ii) \leq' is the usual initial segment relation,
- (iii) $D'((k_1,...,k_n)) := D(k_n),$
- (iv) $(k_1,\ldots,k_n) \Vdash' P \iff k_n \Vdash P$.

Theorem 1.5. Let \mathscr{K} be a Kripke model and \mathscr{K}' its corresponding Beth model. For all nodes $k_1, \ldots, k_n \in K$ and $\mathscr{L}(D(k_n))$ -sentences A, we have

$$(k_1,\ldots,k_n) \Vdash' A \iff k_n \Vdash A.$$

By a more elaborate construction, we can show something stronger: we can transform every Kripke model to a Beth model *with constant domain*.

1.3 Completeness

Lemma 2.3. For all $k \in K$, $\mathscr{L}(\Gamma_k)$ -sentences A and $x \in \mathbb{N}$:

 $\Gamma_k \vdash A \iff \forall k' \succeq_x k : \Gamma_{k'} \vdash A.$

Lemma 2.5. For the Beth model \mathscr{B}^* , we have for every $k \in K$ and $\mathscr{L}(\Gamma_k)$ -sentence A:

 $k \Vdash A \iff \Gamma_k \vdash A.$

Theorem 2.8. For IQC there exists a fallible Beth model \mathscr{B}^* such that, for all sentences A,

$$\mathscr{B}^* \Vdash A \iff \Gamma \vdash A.$$

2 Heyting algebras

Definition. A *lattice* is a poset (A, \leq) such that for each $a, b \in A$ there is a least upper bound $a \lor b$ (the *join* of *a* and *b*) and a greatest lower bound $a \land b$ (the *meet* of *a* and *b*).

Definition. A lattice (A, \leq) is *bounded* if it contains an element \bot , called *bottom*, satisfying $\forall a \in A(\bot \leq a)$ and an element \top , called *top*, satisfying $\forall a \in A(a \leq \top)$. If existing, top and bottom are unique.

Definition. A lattice (A, \leq) is *distributive* if for all $a, b, c \in A$

$$a \wedge (b \lor c) = (a \wedge b) \lor (a \wedge c)$$

 $a \lor (b \wedge c) = (a \lor b) \land (a \lor c).$

Definition. We say that a lattice is *complete* if every subset $X \subseteq A$ has a *join* $\bigvee X := \sup(X)$ and a *meet* $\bigwedge X := \inf(X)$.

Definition. A (*complete*) *Heyting algebra*, (c)Ha for short, is a (complete) bounded lattice (A, \leq) such that for each $a, b \in A$ the set $\{x \mid x \land a \leq b\}$ has a greatest element, which we then denote by $a \rightarrow b$.

Properties. The following properties hold for a Ha (A, \leq) and elements $a, b, c \in A$.

- 1. *A* is distributive.
- 2. $(a \wedge b) \leq c \Leftrightarrow (a \leq b \rightarrow c)$,
- 3. $a \rightarrow b = \top \Leftrightarrow a \leq b$,

3 Global Ω -models

We work in a fixed one-sorted **IQC**-language \mathcal{L} without equality. Let Ω be a fixed cHa.

Definition. A global Ω -model for \mathcal{L} consists of a set M together with:

- an element $\llbracket c \rrbracket \in M$ for each constant symbol $c \in \mathcal{L}$,
- a function $\llbracket R \rrbracket : M^n \to \Omega$ for each *n*-ary relation symbol *R* in \mathcal{L} ,
- a function $\llbracket f \rrbracket : M^n \to M$ for each *n*-ary function symbol *f* in \mathcal{L} .

Semantics. We extend $\llbracket \rrbracket$ to terms in \mathcal{L}_M by taking

$$\llbracket c_m \rrbracket := m,$$

$$\llbracket f(t_1, \dots, t_n) \rrbracket := \llbracket f(\llbracket t_1 \rrbracket, \dots, \llbracket t_n \rrbracket) \rrbracket := \llbracket f \rrbracket (\llbracket t_1 \rrbracket, \dots, \llbracket t_n \rrbracket).$$

Now $\llbracket \rrbracket$ is defined for sentences of \mathcal{L}_M by

$$[[R(t_1, ..., t_n)]] := [[R([[t_1]], ..., [[t_n]])]] := [[R]]([[t_1]], ..., [[t_n]]),$$
$$[[\bot]] := \bot,$$
$$[[A \circ B]] := [[A]] \circ [[B]] \text{ for } \circ \in \{\land, \lor, \rightarrow\},$$
$$[[\forall x A(x)]] := \bigwedge \{ [[A(m)]] \mid m \in M] \},$$
$$[[\exists x A(x)]] := \bigvee \{ [[A(m)]] \mid m \in M \}.$$

4 Intuitionistic logic with existence

[**m**...]

We transform **IQC** (without equality) to a logic with existence as follows. First we add the rule

SUB
$$\frac{A}{A[x/t]}$$
,

where *x* is any variable not occurring freely in assumptions of the derivation of *A*. Furthermore, we add a special relation **E** and adapt the quantifiers deduction rules as follows

To turn it into a logic with equality we add a special relation = and the rules

EQEX
$$\frac{t=t}{\mathbf{E}t}$$
 EXEQ $\frac{\mathbf{E}t}{t=t}$ REPL $\frac{A[x/t]}{A[x/s]}$ $\mathbf{E}t \lor \mathbf{E}s \to t=s$

Finally, for a given language \mathcal{L} , we add rules for all relation and function symbols representing the assumption of *strictness*:

STRR
$$\frac{R(t_1,\ldots,t_n)}{\mathbf{E}t_i}$$
 STRF $\frac{\mathbf{E}f(t_1,\ldots,t_n)}{\mathbf{E}t_i}$.

The resulting system is called **IQCE**.

Properties. The following are derivable in **IQCE**.

- 1. **E** $t \leftrightarrow t = t \leftrightarrow \exists x(t = x),$ 2. $t = s \leftrightarrow \exists x(t = x \land s = x),$
- 3. $f(\vec{t}) = x \leftrightarrow \exists \vec{y}(\vec{y} = \vec{t} \land f(\vec{y}) = x).$

5 Nonglobal Ω-structures

We work in a fixed one-sorted **IQCE**-language \mathcal{L} . let Ω be a fixed cHa. Write .

Definition. A nonglobal Ω -structure for \mathcal{L} is consists of a pair $(M, [\cdot = \cdot])$ containing a set M and a function $[\cdot = \cdot] : M \times M \to \Omega$ such that for all $x, y, z \in M$,

$$[\![x = y]\!] = [\![y = x]\!], \qquad [\![x = y]\!] \land [\![y = z]\!] \le [\![x = z]\!],$$
$$E(x) := [\![x = x]\!], \qquad [\![\vec{x} = \vec{y}]\!] := \bigwedge [\![x_i = y_i]\!],$$

together with Ω -interpretations for all symbols in \mathcal{L} such that for all relations R and functions f

$$\llbracket \vec{a} = \vec{b} \rrbracket \land R(\vec{a}) \le R(\vec{b}) \qquad E(f\vec{a}) \land \llbracket \vec{a} = \vec{b} \rrbracket \le \llbracket f\vec{a} = f\vec{b} \rrbracket$$
$$\llbracket R(\vec{a}) \rrbracket \le \llbracket E(\vec{a}) \rrbracket \qquad E(f\vec{a}) \le E\vec{a}.$$

Semantics. We extend [[]] as before, where $[\cdot = \cdot]$ is the interpretation of = and E of E. The interpretations of the quantifiers are adapted to

$$\llbracket \forall x A(x) \rrbracket := \bigwedge \{\llbracket E(m) \to A(m) \rrbracket \mid m \in M\},$$
$$\llbracket \exists x A(x) \rrbracket := \bigvee \{\llbracket E(m) \land A(m) \rrbracket \mid m \in M\}.$$

6 Soundness and completeness

Theorem 1 (Soundness, Troelstra & van Dalen, 6.7). If $IQCE + \Gamma \vdash A$ for a set of sentences Γ and a sentence A, then $\llbracket A \rrbracket = \top$ in each Ω -model for which $\llbracket B \rrbracket = \top$ for all $B \in \Gamma$, we write $\Gamma \Vdash_{cHa} A$.

Definition. Let Θ be a Ha. A Θ -structure is defined exactly as a Ω -structure. Of a Θ -structure $(M, [\![\cdot = \cdot]\!])$ for some language \mathcal{L} we say that it is *definitionally complete* w.r.t. \mathcal{L} if for all \mathcal{L} -formulae $B(\vec{x})$ such that $[\![B(\vec{m})]\!] \in \Theta$ for all $\vec{m} \in M$, we have

$$\bigvee \{E\vec{m} \land \llbracket B\vec{m} \rrbracket\} \in \Theta, \qquad \qquad \bigwedge \{E\vec{m} \to \llbracket B\vec{m} \rrbracket\} \in \Theta.$$

Theorem 2 (Troelstra & van Dalen, 6.12). Let Γ be and \mathcal{L} -theory. Then there is a definitionally complete Θ -structure in which

$$\Gamma \vdash A \Leftrightarrow \llbracket A \rrbracket = \top.$$

Theorem 3 (Troelstra & van Dalen, 6.13). *Any Ha can be embedded in a cHa preserving* \land , \lor , \rightarrow , \perp *and all existing meets and joins.*

Theorem 4 (Completeness, Troelstra & van Dalen, 6.15). $\Gamma \vdash A \Leftrightarrow \Gamma \Vdash_{cHa} A$.