1 Beth Models

Note: the numbering for definitions, theorems, etc. directly corresponds to the numbering used in Constructivism in Mathematics: An Introduction, Volume II, 1988, ch. 13.

1.1 Introduction

Definition 1.1. A Beth model for a relational language \mathscr{L} is a quadruple $\mathscr{B}=(K, \preceq, D, \Vdash)$ such that
(i) (K, \preceq) is a spread,
(ii) D is a domain function assigning to each node $k \in K$ a non-empty set $D(k)$ such that $k \preceq k^{\prime}$ implies $D(k) \subseteq D\left(k^{\prime}\right)$,
(iii) the forcing relation \Vdash is a binary relation between nodes of K and atomic sentences P such that

B1. $k \Vdash P \Longleftrightarrow \forall \alpha \in k \exists m: \bar{\alpha}(m) \Vdash P$ and $D(k)$ contains the constants in P,
$k \Vdash \perp$ for all $k \in K$,
B2. $k \Vdash A \wedge B \Longleftrightarrow k \Vdash A$ and $k \Vdash B$,
B3. $k \Vdash A \vee B \Longleftrightarrow \forall \alpha \in k \exists n: \bar{\alpha}(n) \Vdash A$ or $\bar{\alpha}(n) \Vdash B$,
B4. $k \Vdash A \rightarrow B \Longleftrightarrow \forall k^{\prime} \succeq k: k^{\prime} \Vdash A$ implies $k^{\prime} \Vdash B$,
B5. $k \Vdash \exists x A(x) \Longleftrightarrow \forall \alpha \in k \exists n \exists d \in D(\bar{\alpha}(n)): \bar{\alpha}(n) \Vdash A(d)$,
B6. $k \Vdash \forall x A(x) \Longleftrightarrow \forall k^{\prime} \succeq k \forall d \in D\left(k^{\prime}\right): k^{\prime} \Vdash A(d)$.
In this definition α ranges over the infinite branches of (K, \preceq).

If (K, \preceq) is a fan, we can, instead of B1, B3, B5, use the following, stronger conditions:
B1' $k \Vdash P \Longleftrightarrow \exists z \forall k^{\prime} \succeq_{z} k \exists k^{\prime \prime} \preceq k^{\prime}: k^{\prime \prime} \Vdash P$
B2' $k \Vdash A \vee B \Longleftrightarrow \exists z \forall k^{\prime} \succeq_{z} k: k^{\prime} \Vdash A$ or $k^{\prime} \Vdash B$
B3' $^{\prime} k \Vdash \exists x A(x) \Longleftrightarrow \exists z \forall k^{\prime} \succeq_{z} k \exists d \in D\left(k^{\prime}\right): k^{\prime} \Vdash A(d)$
We can also liberalize the definition of Beth models by allowing (K, \preceq) to be an arbitrary tree instead of a spread, i.e. we no longer require each $k \in K$ to have a \preceq-successor. This permits Beth models to be finite, with quantification over infinite branches α replaced by quantification over the \preceq-maximal nodes in the tree. Let us refer to these as liberalized Beth models.

1.2 Relation to Kripke Models

Definition 1.5. Let $\mathscr{K}=(K, \preceq, D, \Vdash)$ be a Kripke model. We associate to this Kripke model a Beth model $\mathscr{K}^{\prime}=\left(K^{\prime}, \preceq^{\prime}, D^{\prime}, \vdash^{\prime}\right)$ in the following manner:
(i) K^{\prime} consists of all finite non-decreasing sequences of (K, \preceq),
(ii) \preceq^{\prime} is the usual initial segment relation,
(iii) $D^{\prime}\left(\left(k_{1}, \ldots, k_{n}\right)\right):=D\left(k_{n}\right)$,
(iv) $\left(k_{1}, \ldots, k_{n}\right) \Vdash^{\prime} P \Longleftrightarrow k_{n} \Vdash P$.

Theorem 1.5. Let \mathscr{K} be a Kripke model and \mathscr{K}^{\prime} its corresponding Beth model. For all nodes $k_{1}, \ldots, k_{n} \in K$ and $\mathscr{L}\left(D\left(k_{n}\right)\right)$-sentences A, we have

$$
\left(k_{1}, \ldots, k_{n}\right) \vdash^{\prime} A \Longleftrightarrow k_{n} \Vdash A .
$$

By a more elaborate construction, we can show something stronger: we can transform every Kripke model to a Beth model with constant domain.

1.3 Completeness

Lemma 2.3. For all $k \in K, \mathscr{L}\left(\Gamma_{k}\right)$-sentences A and $x \in \mathbb{N}$:

$$
\Gamma_{k} \vdash A \Longleftrightarrow \forall k^{\prime} \succeq_{x} k: \Gamma_{k^{\prime}} \vdash A .
$$

Lemma 2.5. For the Beth model \mathscr{B}^{*}, we have for every $k \in K$ and $\mathscr{L}\left(\Gamma_{k}\right)$-sentence A :

$$
k \Vdash A \Longleftrightarrow \Gamma_{k} \vdash A .
$$

Theorem 2.8. For IQC there exists a fallible Beth model \mathscr{B}^{*} such that, for all sentences A,

$$
\mathscr{B}^{*} \Vdash A \Longleftrightarrow \Gamma \vdash A .
$$

2 Heyting algebras

Definition. A lattice is a poset (A, \leq) such that for each $a, b \in A$ there is a least upper bound $a \vee b$ (the join of a and b) and a greatest lower bound $a \wedge b$ (the meet of a and b).

Definition. A lattice (A, \leq) is bounded if it contains an element \perp, called bottom, satisfying $\forall a \in A(\perp \leq a)$ and an element \top, called top, satisfying $\forall a \in A(a \leq \top)$. If existing, top and bottom are unique.

Definition. A lattice (A, \leq) is distributive if for all $a, b, c \in A$

$$
\begin{aligned}
& a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) \\
& a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

Definition. We say that a lattice is complete if every subset $X \subseteq A$ has a join $\bigvee X:=\sup (X)$ and a meet $\wedge X:=\inf (X)$.

Definition. A (complete) Heyting algebra, (c)Ha for short, is a (complete) bounded lattice (A, \leq) such that for each $a, b \in A$ the set $\{x \mid x \wedge a \leq b\}$ has a greatest element, which we then denote by $a \rightarrow b$.

Properties. The following properties hold for a $\mathrm{Ha}(A, \leq)$ and elements $a, b, c \in A$.

1. A is distributive.
2. $(a \wedge b) \leq c \Leftrightarrow(a \leq b \rightarrow c)$,
3. $a \rightarrow b=\top \Leftrightarrow a \leq b$,

3 Global Ω-models

We work in a fixed one-sorted IQC-language \mathcal{L} without equality. Let Ω be a fixed cHa .
Definition. A global Ω-model for \mathcal{L} consists of a set M together with:

- an element $\llbracket c \rrbracket \in M$ for each constant symbol $c \in \mathcal{L}$,
- a function $\llbracket R \rrbracket: M^{n} \rightarrow \Omega$ for each n-ary relation symbol R in \mathcal{L},
- a function $\llbracket f \rrbracket: M^{n} \rightarrow M$ for each n-ary function symbol f in \mathcal{L}.

Semantics. We extend $\llbracket \rrbracket$ to terms in \mathcal{L}_{M} by taking

$$
\begin{aligned}
& \llbracket c_{m} \rrbracket:=m, \\
& \llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket:=\llbracket f\left(\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right) \rrbracket:=\llbracket f \rrbracket\left(\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right) .
\end{aligned}
$$

Now $\llbracket \rrbracket$ is defined for sentences of \mathcal{L}_{M} by

$$
\begin{aligned}
& \llbracket R\left(t_{1}, \ldots, t_{n}\right) \rrbracket:=\llbracket R\left(\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right) \rrbracket:=\llbracket R \rrbracket\left(\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right) \\
& \llbracket \perp \rrbracket:=\perp \\
& \llbracket A \circ B \rrbracket:=\llbracket A \rrbracket \circ \llbracket B \rrbracket \text { for } \circ \in\{\wedge, \vee, \rightarrow\} \\
& \llbracket \forall x A(x) \rrbracket:=\bigwedge\{\llbracket A(m) \rrbracket \mid m \in M \rrbracket\} \\
& \llbracket \exists x A(x) \rrbracket:=\bigvee\{\llbracket A(m) \rrbracket \mid m \in M\}
\end{aligned}
$$

4 Intuitionistic logic with existence

We transform IQC (without equality) to a logic with existence as follows. First we add the rule

$$
\operatorname{SUB} \frac{A}{A[x / t]},
$$

where x is any variable not occurring freely in assumptions of the derivation of A. Furthermore, we add a special relation E and adapt the quantifiers deduction rules as follows

To turn it into a logic with equality we add a special relation $=$ and the rules

$$
\text { EQEX } \frac{t=t}{\mathbf{E} t} \quad \text { EXEQ } \frac{\mathbf{E} t}{t=t} \quad \text { REPL } \frac{A[x / t] \quad \mathbf{E} t \vee \mathbf{E} s \rightarrow t=s}{A[x / s]} .
$$

Finally, for a given language \mathcal{L}, we add rules for all relation and function symbols representing the assumption of strictness:

$$
\operatorname{STRR} \frac{R\left(t_{1}, \ldots, t_{n}\right)}{\mathbf{E} t_{i}}
$$

$$
\operatorname{STRF} \frac{\mathbf{E} f\left(t_{1}, \ldots, t_{n}\right)}{\mathbf{E} t_{i}}
$$

The resulting system is called IQCE.
Properties. The following are derivable in IQCE.

1. $\mathrm{E} t \leftrightarrow t=t \leftrightarrow \exists x(t=x)$,
2. $t=s \leftrightarrow \exists x(t=x \wedge s=x)$,
3. $f(\vec{t})=x \leftrightarrow \exists \vec{y}(\vec{y}=\vec{t} \wedge f(\vec{y})=x)$.

5 Nonglobal Ω-structures

We work in a fixed one-sorted IQCE-language \mathcal{L}. let Ω be a fixed cHa. Write .
Definition. A nonglobal Ω-structure for \mathcal{L} is consists of a pair $(M, \llbracket \cdot=\cdot \rrbracket)$ containing a set M and a function $\llbracket \cdot=\cdot \rrbracket: M \times M \rightarrow \Omega$ such that for all $x, y, z \in M$,

$$
\begin{aligned}
& \llbracket x=y \rrbracket=\llbracket y=x \rrbracket, \\
& E(x):=\llbracket x=x \rrbracket,
\end{aligned}
$$

$$
\begin{array}{r}
\llbracket x=y \rrbracket \wedge \llbracket y=z \rrbracket \leq \llbracket x=z \rrbracket \\
\llbracket \vec{x}=\vec{y} \rrbracket:=\bigwedge \llbracket x_{i}=y_{i} \rrbracket
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{c}
{[\mathbf{E} x]} \\
\vdots \\
\frac{A}{\forall y A[x / y]} \forall I^{\mathbf{E}}
\end{array} \\
& \frac{A[x / t] \quad \mathrm{E} t}{\exists x A} \exists I^{\mathrm{E}} \\
& \begin{array}{cc}
{[A][\mathbf{E} x]} \\
\vdots \\
\exists y A[x / y] & \stackrel{C}{C} \\
\hline C & \\
\hline \mathbf{E} .
\end{array}
\end{aligned}
$$

together with Ω-interpretations for all symbols in \mathcal{L} such that for all relations R and functions f

$$
\begin{array}{lr}
\llbracket \vec{a}=\vec{b} \rrbracket \wedge R(\vec{a}) \leq R(\vec{b}) & E(f \vec{a}) \wedge \llbracket \vec{a}=\vec{b} \rrbracket \leq \llbracket f \vec{a}=f \vec{b} \rrbracket \\
\llbracket R(\vec{a}) \rrbracket \leq \llbracket E(\vec{a}) \rrbracket & E(f \vec{a}) \leq E \vec{a} .
\end{array}
$$

Semantics. We extend $\llbracket \rrbracket$ as before, where $\llbracket \cdot=\cdot \rrbracket$ is the interpretation of $=$ and E of \mathbf{E}. The interpretations of the quantifiers are adapted to

$$
\begin{aligned}
& \llbracket \forall x A(x) \rrbracket:=\bigwedge\{\llbracket E(m) \rightarrow A(m) \rrbracket \mid m \in M \rrbracket\} \\
& \llbracket \exists x A(x) \rrbracket:=\bigvee\{\llbracket E(m) \wedge A(m) \rrbracket \mid m \in M\}
\end{aligned}
$$

6 Soundness and completeness

Theorem 1 (Soundness, Troelstra \& van Dalen, 6.7). If IQCE $+\Gamma \vdash A$ for a set of sentences Γ and a sentence A, then $\llbracket A \rrbracket=\top$ in each Ω-model for which $\llbracket B \rrbracket=\top$ for all $B \in \Gamma$, we write $\Gamma \vdash_{c H a} A$.

Definition. Let Θ be a Ha. A Θ-structure is defined exactly as a Ω-structure. Of a Θ-structure $(M, \llbracket \cdot=\cdot \rrbracket)$ for some language \mathcal{L} we say that it is definitionally complete w.r.t. \mathcal{L} if for all \mathcal{L} formulae $B(\vec{x})$ such that $\llbracket B(\vec{m}) \rrbracket \in \Theta$ for all $\vec{m} \in M$, we have

$$
\bigvee\{E \vec{m} \wedge \llbracket B \vec{m} \rrbracket\} \in \Theta, \quad \bigwedge\{E \vec{m} \rightarrow \llbracket B \vec{m} \rrbracket\} \in \Theta
$$

Theorem 2 (Troelstra \& van Dalen, 6.12). Let Γ be and \mathcal{L}-theory. Then there is a definitionally complete Θ-structure in which

$$
\Gamma \vdash A \Leftrightarrow \llbracket A \rrbracket=\top .
$$

Theorem 3 (Troelstra \& van Dalen, 6.13). Any Ha can be embedded in a cHa preserving $\wedge, \vee, \rightarrow$,\perp and all existing meets and joins.

Theorem 4 (Completeness, Troelstra \& van Dalen, 6.15). $\Gamma \vdash A \Leftrightarrow \Gamma \vdash_{c H a} A$.

