1 Category theory

Definition 1.1. A category C is a collection C_0 of objects and a collection C_1 of arrows or morphisms such that the following holds.

- Each arrow has an object X in C_0 as *domain* and an object Y as *codomain*, this is referred to as an arrow from X to Y.
- Given two arrows $X \xrightarrow{f} Y \xrightarrow{g} Z$, there is a composition $X \xrightarrow{g \circ f} Z$. This composition must be associative.
- Every object X has an identity arrow $Id_X : X \to X$ such that $f \circ Id_X = f$ and $Id_X \circ g = g$ for all $f : X \to Y$ and all $g : Y \to X$.

Example 1.1. There is a category Set with all possible sets as objects and the usual functions as arrows.

Example 1.2. Given a poset P, we can see this as a category with as objects the elements of P and an arrow $p \rightarrow q$ iff $p \leq q$.

Definition 1.2. A functor F between categories C and D consists of operations $F_0 : C_0 \to C_1$ and $F_1 : C_1 \to D_1$ such that for each arrow $f : X \to Y$ in C we have $F_1(f) : F_0(X) \to F_1(Y)$. Furthermore, F should respect identities and composition:

- for $X \xrightarrow{f} Y \xrightarrow{g} Z$ we have $F_1(g \circ f) = F_1(g) \circ F_1(f)$,
- for every X in C we have $F_1(Id_X) = Id_{F_0(X)}$.

Example 1.3. Let Top be the category of topological spaces with continuous functions as arrows. Then there exists a functor, the *forgetful functor*, that assigns to each topological space its underlying set.

Definition 1.3. For any category C we can define C^{op} which consists of the same objects and the same arrows, only we reverse the direction of all arrows.

Example 1.4. Given a topological space X we can define a category $\mathcal{O}(X)$ with as objects all opens in X and an arrow $U \to V$ iff $U \subset V$. This also gives rise to the category $\mathcal{O}(X)^{op}$, consisting of the opens of X and an arrow $V \to U$ iff $V \supset U$.

Another category we can construct is $\mathcal{C}(X)$, with for every open U of X an object C(U), the set of continuous functions on U. For each $V \supset U$ we make an arrow $C(V) \rightarrow C(U)$, which is just the restriction of the functions in C(V) to U.

Now we can define a functor $F : \mathcal{O}(X)^{op} \to \mathcal{C}(X)$ by sending each open U to the set C(U) of continuous functions on U, and each inclusion $V \supset U$ to the restriction of C(V) to C(U).

2 Sheaves

Definition 2.1. A *presheaf* on a category C is a functor $F : C^{op} \to \text{Set}$.

Example 2.1. The functor we have seen in example 1.4 is a presheaf on $\mathcal{O}(X)$. Even though it may not be a functor to Set, we can compose it with the forgetful functor (see example 1.3) to obtain a functor to Set.

Remember from example 1.2 that every poset can also be seen as a category. Hence we can see every Heyting algebra as a category.

Definition 2.2. For a complete Heyting algebra \mathcal{C} , we say that F is a *sheaf* on Ω if it is a presheaf on \mathcal{C} that satisfies the sheaf condition. This means that for each $A \subset \mathcal{C}$ (with $p = \bigvee A$) we have that given a family $\{x_a \in F_0(a)\}_{a \in A}$ such that for all $a, a' \in A$ we have

$$F_1(a \wedge a' \le a)(x_a) = F_1(a \wedge a' \le a')(x_{a'}),$$

there is a unique $x \in F_0(p)$ such that for all $a \in A$ we have $F_1(a \le p)(x) = x_a$.

Such a family $\{x_a\}_{a \in A}$ is called a *compatible family*, and the corresponding x is called the *amalga-mation*. So in other words: a sheaf should have a unique amalgamation for each compatible family.

Example 2.2. The presheaf from example 2.1 is a sheaf.

Definition 2.3. A subsheaf $H \subset F$ is a functor H such that:

- $H(X) \subset F(X)$ for each object X,
- $H(f) = F(f)|_{H(Y)}$ for each arrow $f: X \to Y$ and
- H itself is a sheaf.

3 Equivalence of Ω -sets and the sheaves on Ω

Definition 3.1. Let Ω be a complete Heyting algebra. We define the category of Ω -sets as follows. An object is a pair (X, δ) with $\delta : X \times X \to \Omega$ such that for all $x, y, z \in X$:

- $\delta(x,y) \wedge \delta(y,z) \leq \delta(x,z)$ and
- $\delta(x,y) = \delta(y,x).$

An arrow $(X, \delta) \to (Y, \varepsilon)$ is then given by a function $f : X \times Y \to \Omega$, such that for all $x, x' \in X$ and $y, y' \in Y$:

- (1) $f(x,y) \le \delta(x,x) \wedge \varepsilon(y,y),$
- (2) $\delta(x, x') \wedge f(x, y) \wedge \varepsilon(y, y') \leq f(x', y'),$
- (3) $\delta(x,x) \leq \bigvee_{y \in Y} f(x,y)$ and
- (4) $f(x,y) \wedge f(x,y') \leq \varepsilon(y,y').$

Composition of $(X, \delta) \xrightarrow{f} (Y, \varepsilon) \xrightarrow{g} (Z, \eta)$ is then given by $(g \circ f)(x, z) = \bigvee_{y \in Y} f(x, y) \land g(y, z)$. **Definition 3.2.** For each $p \in \Omega$ we define the Ω -set $1_p = (\{*_p\}, \delta_p)$ with $\delta_p(*_p, *_p) = p$.

Lemma 3.1. For any $q \leq p$ in Ω we have a unique arrow $e_{qp} : 1_q \to 1_p$ given by $e_{qp}(*_q, *_p) = q$. **Theorem 3.1.** The category of Ω -sets is equivalent to the category $Sh(\Omega)$ of sheaves on Ω .

4 Lattice of Subsheaves

The subsheaf relation \subset defines a poset structure on the subsheaves of a fixed sheaf F. We show that this structure is in fact a complete Heyting algebra, and relate this to the Heyting algebra we are taking sheaves over.

For the rest of this section, fix a complete Heyting algebra Ω . This work is based on chapters nine and ten of Jaap van Oosten's *Basic Category Theory and Topos Theory* lecture notes (BCTTT).

Lemma 4.1. For any sheaf F over Ω , $F_{\perp} = \{*\}$.

Fix now a sheaf F over Ω . Let Sub(F) be the poset of subsheaves of F ordered by inclusion.

Lemma 4.2. Sub(F) has a greatest element, namely F itself.

Lemma 4.3. Sub(F) has a least element, which is \emptyset everywhere except at $\bot \in \Omega$.

Lemma 4.4 (c.f. BCTTT Lemma 10.13). For every $U \subset \text{Sub}(F)$, the meet $\bigwedge U$ is given by the pointwise intersection

$$(\bigwedge U)_p := \{ x \in F_p \, | \, \forall u \in U. \, x \in u_p \}.$$

Lemma 4.5 (c.f. BCTTT Theorem 9.8). For all $A, B \subset F$, the implication $A \to B$ is given by

$$A \to B)_p := \{ x \in F_p \, | \, \forall q \le p. \, x|_q \in A_q \Rightarrow x|_q \in B_q \}$$

Lemma 4.6 (c.f. BCTTT p. 112). For every $U \subset \text{Sub}(F)$, the join $\bigvee U$ is given by

$$(\bigvee U)_p := \{ x \in F_p \mid p = \bigvee \{ q \le p \mid \exists u \in U. \ x \mid_q \in u_q \} \}.$$

Theorem 4.1. Sub(F) is a complete Heyting algebra.

Theorem 4.2. Sub(1) $\cong \Omega$.