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1 First talk

1.1 The model

Definition. Given a topological space T , we create a model for intuitionistic logic by asso-
ciating to each formula A an open set in T such that:

JA ∧BK = JAK ∩ JBK
JA ∨BK = JAK ∪ JBK

J¬AK = Int(T − JAK)
JA→ BK = Int((T − JAK) ∪ JBK)

J∃xA(x)K =
⋃
ξ∈R

JA(ξ)K

J∀xA(x)K = Int
⋂
ξ∈R

JA(ξ)K

We say that a formula A is valid in this model if JAK = T .

Theorem. (Rasiowa-Sikorski) If A is provable in IQC, then JAK = T .

Remarks. We will assume that Q is contained in the domain R, and that the following
formulas are always valid, where q, r denote variables in the rationals:

1. ∀x, y¬(x < y ∧ x < y)

2. ∀x, y, z(x < y → (x < z ∨ z < y))

3. ∀x∃q, r(q < x ∧ x < r)

4. ∀x, y(x < y → ∃q(x < q ∧ q < y))

Theorem. For ξ ∈ R, define the function ξ : T → R by ξ(t) = inf{r ∈ Q | t ∈ Jξ < rK}.
Then this function is continuous.

Remarks. From the above, it follows that Jξ < ηK = {t ∈ T | ξ(t) < η(t)}. From now on we
take R to be the collection of all continuous functions T → R. We also fix our topological
space T to be the Baire space. This is the space of all infinite sequences of natural numbers.
A basic open in this space is a set of infinite sequences containing exactly those sequences
starting with a given finite sequence.
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1.2 Decision method

Theorem. ∀x, yA(x < y, y < x) is intuitionistically provable iff ¬(P ∧ Q) → A(P,Q) is
provable in intuitionistic propositional logic.

Theorem. (Kreisel) A universal sentence is a consequence of a universal axiom in IQC iff
it’s matrix is a propositional consequence of a finite number of substitution instances of the
axiom, using the variables in the conclusion.

Remark. From the above theorem by Kreisel, a generalization to an arbitrary number of
variables of the decision method given above easily follows.

1.3 Completeness

Theorem. (Completeness) If a universal sentence is not intuitionistically provable, then
it also fails in the model.

2 Second talk

2.1 Maximality of IPC

Definition. Let τ : T → T be a homeomorphism. We define τ : R → R by τ(ξ) = ξ ◦ τ−1
for ξ ∈ R.

Properties.

(i) τJξ < ηK = Jτ(ξ) < τ(η)K for ξ, η ∈ R.

(ii) τJA(ξ1, · · · , ξk)K = JA(τ(ξ1), · · · , τ(ξk))K for all formulae A(x1, . . . , xk) containing no
parameters in R, and all ξ1, . . . , ξk ∈ R.

Proposition. Let A(p1, . . . , pn) be a sentence in the language of the propositional calculus
containing the propositional letters p1, . . . , pn. Suppose that IPC 0 A(p1, . . . , pn). Then
J¬∀y1, . . . , ykA(y1 > 0, . . . , yk > 0)K = T .
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2.2 Adding functions

We introduce variables f, g, . . . that range over functions. We interpret them as elements of

RR := {ϕ : R → R | ∀ξ, η ∈ R(Jξ = ηK ⊆ Jϕ(ξ) = ϕ(η)K)}.

Definition. For ϕ,ψ ∈ RR, we set:

Jϕ 6= ψK =
⋃
ξ∈R

Jϕ(ξ) 6= ψ(ξ)K;

Jϕ = ψK = Int(T\Jϕ 6= ψK).

2.3 Strict extensionality

Theorem. J∀f∀xy (f(x) 6= f(y)→ x 6= y)K = T .

Definition. Given ϕ ∈ R, define Φ : T × R→ R such that:

For all ξ ∈ R : if ξ(t) = a, then Φ(t, a) = ϕ(ξ)(t).

Properties.

(i) Φ(t, ξ(t)) = ϕ(ξ)(t) for all t ∈ T , ξ ∈ R and ϕ ∈ RR.

(ii) For all ϕ ∈ RR, the function Φ is continuous.

2.4 Unique choice

Consider formulae A(x, y) such that ∀xx′yy′ (A(x, y) ∧ x = x′ ∧ y = y′ → A(x′, y′))K = T .

Theorem. J∀x∃!yA(x, y)→ ∃f∀xA(x, f(x))K = T

Definition. For a homeomorphism τ : T → T and its corresponding τ : R → R, we define
τ : RR → RR by τ(ϕ) = τ ◦ ϕ ◦ τ−1, for ϕ ∈ RR.

Properties.

(i) τ(ϕ) ∈ RR for all ϕ ∈ RR.

(ii) τJϕ 6= ψK = Jτ(ϕ) 6= τ(ψ)K for all ϕ,ψ ∈ RR.

(iii) τJA(ξ1, · · · , ξk, ϕ1, . . . , ϕ`)K = JA(τ(ξ1), · · · , τ(ξk), τ(ϕ1), . . . , τ(ϕ`))K for all formulae
A(x1, . . . , xk, f1, . . . , f`) containing no parameters in R or RR, all ξ1, . . . , ξk ∈ R, and
all ϕ1, . . . , ϕ` ∈ RR.
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Theorem. Suppose A(x, y) contains no parameters in R or RR, and let ϕ ∈ R. If
J∀x∃!yA(x, y)K = T and J∀xA(x, ϕ(x))K = T , then there exists a continuous function F :
R→ R such that ϕ(ξ) = F ◦ ξ for all ξ ∈ R.
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