Seminar on Intuitionism

Hand-out lecture 4 March 9, 2017

1 First talk

1.1 The model

Definition. Given a topological space T, we create a model for intuitionistic logic by associating to each formula A an open set in T such that:

$$\begin{bmatrix} A \land B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \cap \begin{bmatrix} B \end{bmatrix}$$
$$\begin{bmatrix} A \lor B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \cup \begin{bmatrix} B \end{bmatrix}$$
$$\begin{bmatrix} \neg A \end{bmatrix} = Int(T - \begin{bmatrix} A \end{bmatrix})$$
$$\begin{bmatrix} A \rightarrow B \end{bmatrix} = Int((T - \begin{bmatrix} A \end{bmatrix}) \cup \begin{bmatrix} B \end{bmatrix})$$
$$\begin{bmatrix} \exists x A(x) \end{bmatrix} = \bigcup_{\xi \in \mathcal{R}} \begin{bmatrix} A(\xi) \end{bmatrix}$$
$$\begin{bmatrix} \forall x A(x) \end{bmatrix} = Int \bigcap_{\xi \in \mathcal{R}} \begin{bmatrix} A(\xi) \end{bmatrix}$$

We say that a formula A is *valid* in this model if [A] = T.

Theorem. (Rasiowa-Sikorski) If A is provable in IQC, then $[\![A]\!] = T$.

Remarks. We will assume that \mathbb{Q} is contained in the domain \mathcal{R} , and that the following formulas are always valid, where q, r denote variables in the rationals:

- 1. $\forall x, y \neg (x < y \land x < y)$
- 2. $\forall x, y, z(x < y \rightarrow (x < z \lor z < y))$
- 3. $\forall x \exists q, r(q < x \land x < r)$
- 4. $\forall x, y (x < y \rightarrow \exists q (x < q \land q < y))$

Theorem. For $\xi \in \mathcal{R}$, define the function $\xi : T \to \mathbb{R}$ by $\xi(t) = \inf\{r \in \mathbb{Q} \mid t \in [\![\xi < r]\!]\}$. Then this function is continuous.

Remarks. From the above, it follows that $[\![\xi < \eta]\!] = \{t \in T \mid \xi(t) < \eta(t)\}\)$. From now on we take \mathcal{R} to be the collection of all continuous functions $T \to \mathbb{R}$. We also fix our topological space T to be the *Baire space*. This is the space of all infinite sequences of natural numbers. A basic open in this space is a set of infinite sequences containing exactly those sequences starting with a given finite sequence.

1.2 Decision method

Theorem. $\forall x, y A (x < y, y < x)$ is intuitionistically provable iff $\neg (P \land Q) \rightarrow A(P,Q)$ is provable in intuitionistic propositional logic.

Theorem. (Kreisel) A universal sentence is a consequence of a universal axiom in IQC iff it's matrix is a propositional consequence of a finite number of substitution instances of the axiom, using the variables in the conclusion.

Remark. From the above theorem by Kreisel, a generalization to an arbitrary number of variables of the decision method given above easily follows.

1.3 Completeness

Theorem. (Completeness) If a universal sentence is not intuitionistically provable, then it also fails in the model.

2 Second talk

2.1 Maximality of IPC

Definition. Let $\tau : T \to T$ be a homeomorphism. We define $\tau : \mathcal{R} \to \mathcal{R}$ by $\tau(\xi) = \xi \circ \tau^{-1}$ for $\xi \in \mathcal{R}$.

Properties.

- (i) $\tau \llbracket \xi < \eta \rrbracket = \llbracket \tau(\xi) < \tau(\eta) \rrbracket$ for $\xi, \eta \in \mathcal{R}$.
- (ii) $\tau \llbracket A(\xi_1, \dots, \xi_k) \rrbracket = \llbracket A(\tau(\xi_1), \dots, \tau(\xi_k)) \rrbracket$ for all formulae $A(x_1, \dots, x_k)$ containing no parameters in \mathcal{R} , and all $\xi_1, \dots, \xi_k \in \mathcal{R}$.

Proposition. Let $A(p_1, \ldots, p_n)$ be a sentence in the language of the propositional calculus containing the propositional letters p_1, \ldots, p_n . Suppose that IPC $\nvDash A(p_1, \ldots, p_n)$. Then $[\![\neg \forall y_1, \ldots, y_k A(y_1 > 0, \ldots, y_k > 0)]\!] = T$.

2.2 Adding functions

We introduce variables f, g, \ldots that range over functions. We interpret them as elements of

$$\mathcal{R}^{\mathcal{R}} := \{ \varphi : \mathcal{R} \to \mathcal{R} \mid \forall \xi, \eta \in \mathcal{R}(\llbracket \xi = \eta \rrbracket \subseteq \llbracket \varphi(\xi) = \varphi(\eta) \rrbracket) \}.$$

Definition. For $\varphi, \psi \in \mathcal{R}^{\mathcal{R}}$, we set:

$$\llbracket \varphi \neq \psi \rrbracket = \bigcup_{\xi \in \mathcal{R}} \llbracket \varphi(\xi) \neq \psi(\xi) \rrbracket;$$
$$\llbracket \varphi = \psi \rrbracket = \operatorname{Int}(T \setminus \llbracket \varphi \neq \psi \rrbracket).$$

2.3 Strict extensionality

Theorem. $[\forall f \forall xy (f(x) \neq f(y) \rightarrow x \neq y)] = T.$

Definition. Given $\varphi \in \mathcal{R}$, define $\Phi : T \times \mathbb{R} \to \mathbb{R}$ such that:

For all
$$\xi \in \mathcal{R}$$
: if $\xi(t) = a$, then $\Phi(t, a) = \varphi(\xi)(t)$.

Properties.

- (i) $\Phi(t,\xi(t)) = \varphi(\xi)(t)$ for all $t \in T, \xi \in \mathcal{R}$ and $\varphi \in \mathcal{R}^{\mathcal{R}}$.
- (ii) For all $\varphi \in \mathcal{R}^{\mathcal{R}}$, the function Φ is continuous.

2.4 Unique choice

Consider formulae A(x, y) such that $\forall xx'yy'(A(x, y) \land x = x' \land y = y' \rightarrow A(x', y'))] = T$.

Theorem. $[\![\forall x \exists ! y A(x, y) \rightarrow \exists f \forall x A(x, f(x))]\!] = T$

Definition. For a homeomorphism $\tau : T \to T$ and its corresponding $\tau : \mathcal{R} \to \mathcal{R}$, we define $\tau : \mathcal{R}^{\mathcal{R}} \to \mathcal{R}^{\mathcal{R}}$ by $\tau(\varphi) = \tau \circ \varphi \circ \tau^{-1}$, for $\varphi \in \mathcal{R}^{\mathcal{R}}$.

Properties.

- (i) $\tau(\varphi) \in \mathcal{R}^{\mathcal{R}}$ for all $\varphi \in \mathcal{R}^{\mathcal{R}}$.
- (ii) $\tau \llbracket \varphi \neq \psi \rrbracket = \llbracket \tau(\varphi) \neq \tau(\psi) \rrbracket$ for all $\varphi, \psi \in \mathcal{R}^{\mathcal{R}}$.
- (iii) $\tau \llbracket A(\xi_1, \dots, \xi_k, \varphi_1, \dots, \varphi_\ell) \rrbracket = \llbracket A(\tau(\xi_1), \dots, \tau(\xi_k), \tau(\varphi_1), \dots, \tau(\varphi_\ell)) \rrbracket$ for all formulae $A(x_1, \dots, x_k, f_1, \dots, f_\ell)$ containing no parameters in \mathcal{R} or $\mathcal{R}^{\mathcal{R}}$, all $\xi_1, \dots, \xi_k \in \mathcal{R}$, and all $\varphi_1, \dots, \varphi_\ell \in \mathcal{R}^{\mathcal{R}}$.

Theorem. Suppose A(x, y) contains no parameters in \mathcal{R} or $\mathcal{R}^{\mathcal{R}}$, and let $\varphi \in \mathcal{R}$. If $[\![\forall x \exists ! y A(x, y)]\!] = T$ and $[\![\forall x A(x, \varphi(x))]\!] = T$, then there exists a continuous function $F : \mathbb{R} \to \mathbb{R}$ such that $\varphi(\xi) = F \circ \xi$ for all $\xi \in \mathbb{R}$.