Seminar on Models of Intuitionism

Hand-out lecture 5
16 March

Introduction to Partial Recursive Functions

Definition. A function $F: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is defined from functions $G: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $H: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ by primitive recursion if

$$
\begin{aligned}
F(\vec{x}, 0) & =G(\vec{x}), \\
F(\vec{x}, y+1) & =H(F(\vec{x}, y), \vec{x}, y) .
\end{aligned}
$$

Definition. The class of primitive recursive functions is the smallest class of functions

1. containing the initial functions

$$
\begin{aligned}
& 0 \\
& Z=\lambda x \cdot 0 \\
& S=\lambda x \cdot x+1 \\
& \Pi_{i}^{k}=\lambda x_{1} \ldots x_{k} \cdot x_{i} \text { for } k \in \mathbb{N} \text { and } 1 \leq i \leq k
\end{aligned}
$$

2. closed under composition, i.e. the scheme $F(\vec{x})=H\left(G_{1}(\vec{x}), \ldots, G_{n}(\vec{x})\right)$ where H, G_{1}, \ldots, G_{n} are primitive recursive;
3. closed under primitive recursion.

Proposition. If $F: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is primitive recursive, then so are

$$
\begin{aligned}
& \lambda \vec{x} z . \Sigma_{y<z} F(\vec{x}, y) \\
& \lambda \vec{x} z \cdot \Pi_{y<z} F(\vec{x}, y) \\
& \lambda \vec{x} z \cdot(\mu y<z[F(\vec{x}, y)=0]),
\end{aligned}
$$

where the latter is defined from F by bounded minimalisation: it outputs the least $y<z$ with $F(\vec{x}, y)=0$; or z if such y does not exist.

Definition. The class of partial recursive functions is the smallest class of functions

1. containing the initial functions;
2. closed under composition;
3. closed under primitive recursion;
4. closed under minimalisation, i.e. the scheme

$$
F(\vec{x}) \simeq \mu y[\forall z \leq y(G(\vec{x}, z) \text { is defined }) \text { and } G(\vec{x}, y)=0]
$$

where $G: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is partial recursive (the right-hand side outputs the least y meeting the requirements, or is undefined if such y does not exist).

Notation.

1. If F, G are partial recursive functions, then we write $F(\vec{x}) \simeq G(\vec{x})$ to mean that $F(\vec{x})$ is defined precisely when $G(\vec{x})$ is defined and if this is the case, then $F(\vec{x})=G(\vec{x})$.
2. We write $\left\langle x_{1}, \ldots, x_{k}\right\rangle$ for the code of the sequence $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{N}^{k}$.

Enumeration Theorem (Kleene). There exists a primitive recursive function $U: \mathbb{N} \rightarrow \mathbb{N}$ and a primitive recursive predicate $T: \mathbb{N}^{4} \rightarrow \mathbb{N}$ such that for every n-ary partial recursive function F there exists a number e (called an index of F) with

$$
F\left(x_{1}, \ldots, x_{n}\right) \simeq U\left(\mu y \cdot T\left(n, e,\left\langle x_{1}, \ldots, x_{n}\right\rangle, y\right)\right)
$$

The partial recursive function $\Phi(n, e, x)=U(\mu y . T(n, e, x, y))$ enumerates the partial recursive functions.

Notation. We denote the e-th partial recursive function on n arguments by φ_{e}^{n} (or just φ_{e}), i.e. we set $\varphi_{e}^{n}\left(x_{1}, \ldots, x_{n}\right)=\Phi\left(n, e,\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)$ for any $x_{1}, \ldots, x_{n} \in \mathbb{N}$. We also write $e \cdot\left(x_{1}, \ldots, x_{n}\right)$ for $\varphi_{e}\left(x_{1}, \ldots, x_{n}\right)$.
S_{n}^{m}-Theorem (Kleene). For every $m, n \geq 0$ there is an ($m+1$)-ary primitieve recursive function S_{n}^{m} such that for all $e, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}$,

$$
S_{n}^{m}\left(e, x_{1}, \ldots, x_{m}\right) \cdot\left(y_{1}, \ldots, y_{n}\right) \simeq e \cdot\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)
$$

Recursion Theorem (Kleene). For every $k \geq 0$ and every ($k+1$)-ary partial recursive function F there exists an index e such that for all x_{1}, \ldots, x_{k} the following holds:

$$
e \cdot\left(x_{1}, \ldots, x_{k}\right) \simeq F\left(x_{1}, \ldots, x_{k}, e\right)
$$

Fixpoint Theorem (Kleene). For every recursive function ${ }^{1} F$ and every n there is a number e such that e and $F(e)$ are indices for the same n-ary partial recursive function. In notation this means:

$$
\varphi_{e}^{(n)} \simeq \varphi_{F(e)}^{(n)}
$$

Example. Consider the primitive recursive function $F(y, x)=y$. In particular, it is partial recursive, so by the Enumeration Theorem it has an index c. Define $G(x)=S_{1}^{1}(c, x)$. Note that G is recursive (since S_{1}^{1} is primitive recursive), so we can apply the Fixpoint Theorem to obtain e such that $\varphi_{e}(x) \simeq \varphi_{G(e)}(x) \simeq$ $\varphi_{S_{1}^{1}(c, e)}(x) \simeq \varphi_{c}(e, x) \simeq F(e, x) \simeq e$. Hence, the recursive function φ_{e} outputs its own index (on any input)!

Observe that we could have also applied the Recursion Theorem directly to the function $F(x, y)=y$ to get this result.

Undecidability of the Halting Problem (Turing). Consider the Halting set

$$
H=\left\{(f, y) \mid \varphi_{f}(y) \text { is defined }\right\} .
$$

Its characteristic function χ_{H} is not recursive.

References

[1] Jaap van Oosten. Basic computability theory. Lecture notes, available at https://www.staff.science.uu.nl/~ooste110/syllabi/compthmoeder. pdf, 1993; revised 2013.
[2] Sebastiaan A. Terwijn. Syllabus computability theory. Lecture notes, available at http://www.math.ru.nl/~terwijn/teaching/syllabus.pdf, 2004; revised 2016.

[^0]
[^0]: ${ }^{1} \mathrm{~A}$ recursive function is a total partial recursive function.

