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Definition: A problem is some exercise for us to identify certain desirable elements in a set.
Given problems A and B, we also have problems A ∧ B: this is the problem of solving both
A and B, A ∨B: this is the problem of solving at least A or B, A→ B: this is the problem
of solving B given a solution to A, and ¬A, this is the problem of deriving a contradiction
from a solution to A. Problems of this form will be called composite problems. We say that
a composite problem is solvable if we can find a solution to it which is independent of the
problems A and B.

Assumption: We assume that the following problems have been solved, for all A,B,C:

• A→ A ∧A

• A ∧B → B ∧A

• (A→ B)→ (A ∧ C → B ∧ C)

• B → (A→ B)

• A ∧ (A→ B)→ B

• A→ A ∨B

• A ∨B → B ∨A

• (A→ C) ∧ (B → C)→ (A ∨B → C)

• ¬A→ (A→ B)

• (A→ B) ∧ (A→ ¬B)→ ¬A

We also assume the inference rules of modus ponens, substitution and solving A from A∧B.

Claim (Kolmogorov): This notion of solvability coincides with provability in intuitionistic
propositional logic.

Formalized notion: Fix a countably infinite set of ’elementary problems’. If A is a problem,
denote the set of possible solutions of A by F (A), and the set of actual solutions of A by
X(A). Then define for problems A and B:

• F (A ∧B) = F (A)× F (B) and X(A ∧B) = X(A)×X(B).

• F (A ∨B) = F (A) t F (B) and X(A ∨B) = X(A) tX(B).
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• F (A→ B) = F (B)F (A) and X(A→ B) = {f ∈ F (B)F (A) | f(X(A)) ⊆ X(B)}

We define ¬A as A→ A0, where A0 is an elementary problem such that X(A0) = ∅.

Definition: Suppose A(a1, ..., an) is a problem. Then we call A solvable for the system
F (a1), ..., F (an) if there is an element in F (A) which is in every X(A), so for every possible
assignment X(a1), ..., X(an). If A is solvable for all F (a1), ..., F (an), then we call it identically
solvable.

Minimal logic: Minimal logic has the following axioms:

• x→ (y → x)

• (x→ (y → z))→ ((x→ y)→ (x→ z))

• x→ (y → (x ∧ y))

• x ∧ y → x

• x ∧ y → y

• x→ (x ∨ y)

• y → (x ∨ y)

• (x→ z)→ ((y → z)→ ((x ∨ y)→ z))

And we also have modus ponens and substitution.

Proposition: All these axioms are identically solvable.

Lemma 1: If ∆ ` A and every formula in ∆ is identically solvable, then A is identically
solvable.

Definition: A critical implication is a formula of the form∧
i<n

((Pi → Qi)→ Qi)→ R

Where each Pi is a nonempty elementary conjunction, R and each Qi are nonempty elementary
disjunctions, and for each i, there is no variable occurring in both Pi and Qi.

Lemma 2: Every critical implication is refutable.

Lemma 3: For every formula A, either ` A or A ` J with J a critical implication.
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A proof of this lemma can be found in [4].

Theorem: If A is identically solvable, then it is derivable.
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