Seminar on Models of Intuitionism - Läuchli realizability

Hand-out lecture 8

April 13, 2017

1 Proof assignments

During this talk, countably infinite sets Γ and Π , and a fixed element $c_0 \in \Gamma$ are given. We consider a basic language \mathcal{L} without function or constant symbols. We adopt the following convention: the tuple $\langle a, b \rangle$ denotes a function f such that f(0) = a and f(1) = b.

Definition 1.1. For an $\mathcal{L}(\Gamma)$ -formula A, we define S(A) by:

- (i) $S(A) = \Pi$ if A is atomic;
- (ii) $S(A \wedge B) = S(A) \times S(B);$
- (iii) $S(A \lor B) = S(A) \sqcup S(B) = (\{0\} \times S(A)) \cup (\{1\} \times S(B));$
- (iv) $S(A \to B) = S(B)^{S(A)};$

(v)
$$S(\forall x A) = S(A)^{\Gamma};$$

(vi) $S(\exists x A) = \Gamma \times S(A);$

Using induction, one may show that S(A[c/x]) = S(A) for all $c \in \Gamma$.

Definition 1.2. A proof assignment assign to each $\mathcal{L}(\Gamma)$ -sentence A a set p(A) such that:

- (i) $p(\perp) \subseteq p(A) \subseteq \Pi$ for all atomic A;
- (ii) $p(A \times B) = p(A) \times p(B);$
- (iii) $p(A \lor B) = p(A) \sqcup p(B);$
- (iv) $p(A \rightarrow B) = \{f \colon S(A) \rightarrow S(B) \mid f(p(A)) \subseteq p(B)\};$
- (v) $p(\forall x A) = \{f \colon \Gamma \to S(A) \mid \forall c \in \Gamma : f(c) \in p(A[c/x])\};$
- (vi) $p(\exists x A) = \{ \langle c, y \rangle \mid c \in \Gamma, y \in p(A[c/x]) \}.$

Using induction, one may show that $p(A) \subseteq S(A)$ for all $\mathcal{L}(\Gamma)$ -sentences A.

2 Simple functionals

Definition 2.1. Let \mathcal{D} be the least set such that:

- (i) $\{0\}, \{1\}, \Gamma, \Pi \in \mathcal{D};$
- (ii) if $D_1, D_2 \in \mathcal{D}$, then also $D_1 \times D_2, D_1 \cup D_2, D_1^{D_2} \in \mathcal{D}$.

We call $\mathcal{F} := \bigcup \mathcal{D}$ the set of *functionals*.

- **Proposition 2.1.** (i) Every functional is either an element of $\{0,1\} \cup \Gamma \cup \Pi$, or it is a function $D_1 \to D_2$ for certain $D_1, D_2 \in \mathcal{D}$.
- (ii) For every $\mathcal{L}(\Gamma)$ -formula A, we have $S(A) \in \mathcal{D}$ and thus $S(A) \subseteq \mathcal{F}$.

Definition 2.2. The set of *terms* is defined by:

- (i) 0, 1, c_0 and all variables are terms;
- (ii) if s and t are terms, then s(t) and $\langle s, t \rangle$ are also terms;
- (iii) if s is a term and $D \in \mathcal{D}$, then $\lambda x^D(s)$ is also a term.

Definition 2.3. Suppose to each variable x, a functional V(x) has been assigned. We extend V to all terms by:

- (i) V(0) = 0, V(1) = 1 and $V(c_0) = c_0$;
- (ii) V(s(t)) = V(s)(V(t)), which is defined as the value of V(s) at V(t) if V(s) is a function and $V(t) \in \text{dom}(V(s))$; and 0 otherwise;
- (iii) $V(\langle s,t\rangle) = \langle V(s), V(t)\rangle;$
- (iv) $V(\lambda x^D(t))$ is the function with domain D that assigns to $d \in D$ the value V'(t), where V' is the same as V except that V'(x) = d.

We write $t(\theta_1, \ldots, \theta_n) = V(t(x_1, \ldots, x_n))$ where $V(x_i) = \theta_i$ for $1 \le i \le n$. In particular, we do not distinguish between a closed term t and the functional V(t) (where V is arbitrary). We call such a functional that is given by a closed term a *simple functional*.

Example 2.1. Let $D = S((A \to C) \land (B \to C))$ and $E = S(A \lor B)$. Then

$$t = \lambda x^D \left(\lambda y^E(\langle x(0)(y(1)), x(1)(y(1)) \rangle(y(0))) \right)$$

denotes a simple functional such that for all proof assignments p:

$$t \in p[(A \to C) \land (B \to C) \to (A \lor B \to C)].$$

3 Invariant functionals

We consider permutations σ of $\Gamma \cup \Pi$ such that $\sigma(\Gamma) = \Gamma$, $\sigma(\Pi) = \Pi$ and $\sigma(c_0) = c_0$. We extend it to \mathcal{F} by:

- (i) $\sigma(0) = 0, \, \sigma(1) = 1;$
- (ii) if $g: D_1 \to D_2$, then $\sigma(g) = \sigma \circ g \circ \sigma^{-1} : \sigma(D_1) \to \sigma(D_2)$. In other words, we have $(\sigma(g))(\sigma(x)) = \sigma(g(x))$ for all $x \in D_1$. In particular, $\sigma(\langle a, b \rangle) = \langle \sigma(a), \sigma(b) \rangle$.

Definition 3.1. We say that a functional $\theta \in \mathcal{F}$ is *invariant* if for all such σ , we have $\sigma(\theta) = \theta$.

Proposition 3.1. (i) For all $D \in \mathcal{D}$, we have that $\sigma|_D$ is a permutation of D.

(ii) For all terms $t(x_1, \ldots, x_n)$ and functionals $\theta_1, \ldots, \theta_n$, we have that $\sigma(t(\theta_1, \ldots, \theta_n)) = t(\sigma(\theta_1), \ldots, \sigma(\theta_n))$. In particular, all simple functionals are invariant.

4 Soundness and completeness

Theorem 4.1. Let A be an \mathcal{L} -sentence. Then the following are equivalent:

- (i) $\mathbf{IQC} \vdash A$;
- (ii) there is a simple functional θ such that for all proof assignments $p: \theta \in p(A)$;
- (iii) for all proof assignments p, there is a simple functional θ such that: $\theta \in p(A)$;
- (iv) there is an invariant functional θ such that for all proof assignments $p: \theta \in p(A)$;
- (v) for all proof assignments p, there is an invariant functional θ such that: $\theta \in p(A)$.

The implication $(v) \Rightarrow (i)$ is most difficult. We need to show: if **IQC** $\nvDash A$, then there exists a proof assignment p such that p(A) contains no invariant functionals.

5 Setup for the proof

We consider the set $\Sigma = \omega^{<\omega} \cup \{U\}$, where U is some object not in $\omega^{<\omega}$. For $s, s' \in \Sigma$, we say that $s \leq s'$ if either s' = U, or $s, s' \in \omega^{<\omega}$ and $s \sqsubseteq s'$. To each $s \in \Sigma$, a countably infinite set $\Psi(s)$ (the *domain* at s) is assigned, such that:

- (i) if $s \leq s'$, then $\Psi(s) \subseteq \Psi(s')$;
- (ii) if $s \leq s'$ and $s \neq s'$, then $\Psi(s') \Psi(s)$ is infinite.

Definition 5.1. A model will be a fallible Kripke model for \mathcal{L} on the frame and domains defined above. That is, a model is a relation \Vdash between elements of Σ and $\mathcal{L}(\Psi(U))$ -sentences such that:

- (i) if A is atomic then:
 - if $s \Vdash A$, then A is an $\mathcal{L}(\Psi(s))$ -sentence;
 - if $s \Vdash A$ and $s \preceq s'$, then $s' \Vdash A$;
 - if $s \Vdash \bot$ and A is an $\mathcal{L}(\Psi(s))$ -sentence, then $s \Vdash A$.

In the following clauses, assume that A and B are $\mathcal{L}(\Psi(s))$ -sentences:

- (ii) $s \Vdash A \land B$ iff $s \Vdash A$ and $s \Vdash B$;
- (iii) $s \Vdash A \lor B$ iff $s \Vdash A$ or $s \Vdash B$;
- (iv) $s \Vdash A \to B$ iff for all s': if $s \leq s'$ and $s' \Vdash A$, then $s' \Vdash B$;
- (v) $s \Vdash \exists x A$ iff there exists a $c \in \Psi(s)$ such that $s \Vdash A[c/x]$.
- (vi) $s \Vdash \forall x A$ iff for all s' such that $s \leq s'$ and $c \in \Psi(s')$, we have $s' \Vdash A[c/x]$.

Theorem 5.1. Let A be an \mathcal{L} -sentence. If $\mathbf{IQC} \nvDash A$, then there exists a model \Vdash such that $\langle \rangle \nvDash A$.

6 The actual proof

Definition 6.1. Fix some one-to-one function q from Σ to the set of prime numbers. We define $\varphi : \Sigma \to \mathbb{N}$ as follows:

- $\varphi(\langle \rangle) = 1$,
- $\varphi(s*n) = \varphi(s)q(s*n)$ and
- $\varphi(U) = 0.$

Definition 6.2. Every subset in Σ has a greatest lower bound (glb), namely the initial segment that all elements in the subset share. Define $s_n = \text{glb}\{s : n \mid \varphi(s)\}$.

Impose the following structure on Γ and Π :

$$\Gamma = \Pi = \bigcup \{ \Psi(s_n) \times \mathbb{Z}/n\mathbb{Z} : n \in \mathbb{N} \}.$$

Note that we identified these sets with one another, even though they may not actually be the same. We just do this as a notational convenience. In addition we require this structure to be such that $c_0 \in \Psi(s_1) \times \mathbb{Z}/1\mathbb{Z}$.

Definition 6.3. We define $\Gamma_n = \bigcup \{ \Psi(s_k) \times \mathbb{Z}/k\mathbb{Z} : k \mid n \}.$

Definition 6.4. Any $c \in \Gamma$ is now actually an ordered pair. We denote \bar{c} for its first component. Similarly, for each $A \in \mathcal{L}(\Gamma)$ we define \bar{A} to be the formula with each constant c in A replaced by \bar{c} .

Definition 6.5. Define $\sigma : \Gamma \to \Gamma$ by $\sigma(\langle d, [i]_n \rangle) = \langle d, [i+1]_n \rangle$. Where $[i]_n \in \mathbb{Z}/n\mathbb{Z}$ denotes the equivalence class of the integer *i* modulo *n*.

Definition 6.6. To a model Φ we associate a proof assignment p that is given by

$$p(A) = \left\{ \begin{array}{l} \left\{ \Psi(s_n) \times \mathbb{Z}/n\mathbb{Z} : s_n \Vdash \bar{A} \text{ or } s_n \Vdash \bot \right\} \end{array} \right\}$$

for all atomic A.

Lemma 6.1. Let a model Φ be given, and let p be the proof assignment that is associated to it. Then for all $n \in \mathbb{N}$ and $A \in \mathcal{L}(\Gamma_n)$ we have that σ^n has a fixed element in p(A) if and only if $s_n \Vdash \overline{A}$.