Seminar on Models of Intuitionism - Läuchli realizability

Hand-out lecture 8

April 13, 2017

1 Proof assignments

During this talk, countably infinite sets Γ and Π, and a fixed element $c_{0} \in \Gamma$ are given. We consider a basic language \mathcal{L} without function or constant symbols. We adopt the following convention: the tuple $\langle a, b\rangle$ denotes a function f such that $f(0)=a$ and $f(1)=b$.

Definition 1.1. For an $\mathcal{L}(\Gamma)$-formula A, we define $S(A)$ by:
(i) $S(A)=\Pi$ if A is atomic;
(ii) $S(A \wedge B)=S(A) \times S(B)$;
(iii) $S(A \vee B)=S(A) \sqcup S(B)=(\{0\} \times S(A)) \cup(\{1\} \times S(B))$;
(iv) $S(A \rightarrow B)=S(B)^{S(A)}$;
(v) $S(\forall x A)=S(A)^{\Gamma}$;
(vi) $S(\exists x A)=\Gamma \times S(A)$;

Using induction, one may show that $S(A[c / x])=S(A)$ for all $c \in \Gamma$.
Definition 1.2. A proof assignment assign to each $\mathcal{L}(\Gamma)$-sentence A a set $p(A)$ such that:
(i) $p(\perp) \subseteq p(A) \subseteq \Pi$ for all atomic A;
(ii) $p(A \times B)=p(A) \times p(B)$;
(iii) $p(A \vee B)=p(A) \sqcup p(B)$;
(iv) $p(A \rightarrow B)=\{f: S(A) \rightarrow S(B) \mid f(p(A)) \subseteq p(B)\}$;
(v) $p(\forall x A)=\{f: \Gamma \rightarrow S(A) \mid \forall c \in \Gamma: f(c) \in p(A[c / x])\}$;
(vi) $p(\exists x A)=\{\langle c, y\rangle \mid c \in \Gamma, y \in p(A[c / x])\}$.

Using induction, one may show that $p(A) \subseteq S(A)$ for all $\mathcal{L}(\Gamma)$-sentences A.

2 Simple functionals

Definition 2.1. Let \mathcal{D} be the least set such that:
(i) $\{0\},\{1\}, \Gamma, \Pi \in \mathcal{D}$;
(ii) if $D_{1}, D_{2} \in \mathcal{D}$, then also $D_{1} \times D_{2}, D_{1} \cup D_{2}, D_{1}^{D_{2}} \in \mathcal{D}$.

We call $\mathcal{F}:=\bigcup \mathcal{D}$ the set of functionals.
Proposition 2.1. (i) Every functional is either an element of $\{0,1\} \cup \Gamma \cup \Pi$, or it is a function $D_{1} \rightarrow D_{2}$ for certain $D_{1}, D_{2} \in \mathcal{D}$.
(ii) For every $\mathcal{L}(\Gamma)$-formula A, we have $S(A) \in \mathcal{D}$ and thus $S(A) \subseteq \mathcal{F}$.

Definition 2.2. The set of terms is defined by:
(i) $0,1, c_{0}$ and all variables are terms;
(ii) if s and t are terms, then $s(t)$ and $\langle s, t\rangle$ are also terms;
(iii) if s is a term and $D \in \mathcal{D}$, then $\lambda x^{D}(s)$ is also a term.

Definition 2.3. Suppose to each variable x, a functional $V(x)$ has been assigned. We extend V to all terms by:
(i) $V(0)=0, V(1)=1$ and $V\left(c_{0}\right)=c_{0}$;
(ii) $V(s(t))=V(s)(V(t))$, which is defined as the value of $V(s)$ at $V(t)$ if $V(s)$ is a function and $V(t) \in \operatorname{dom}(V(s))$; and 0 otherwise;
(iii) $V(\langle s, t\rangle)=\langle V(s), V(t)\rangle$;
(iv) $V\left(\lambda x^{D}(t)\right)$ is the function with domain D that assigns to $d \in D$ the value $V^{\prime}(t)$, where V^{\prime} is the same as V except that $V^{\prime}(x)=d$.
We write $t\left(\theta_{1}, \ldots, \theta_{n}\right)=V\left(t\left(x_{1}, \ldots, x_{n}\right)\right)$ where $V\left(x_{i}\right)=\theta_{i}$ for $1 \leq i \leq n$. In particular, we do not distinguish between a closed term t and the functional $V(t)$ (where V is arbitrary). We call such a functional that is given by a closed term a simple functional.
Example 2.1. Let $D=S((A \rightarrow C) \wedge(B \rightarrow C))$ and $E=S(A \vee B)$. Then

$$
t=\lambda x^{D}\left(\lambda y^{E}(\langle x(0)(y(1)), x(1)(y(1))\rangle(y(0)))\right)
$$

denotes a simple functional such that for all proof assignments p :

$$
t \in p[(A \rightarrow C) \wedge(B \rightarrow C) \rightarrow(A \vee B \rightarrow C)]
$$

3 Invariant functionals

We consider permutations σ of $\Gamma \cup \Pi$ such that $\sigma(\Gamma)=\Gamma, \sigma(\Pi)=\Pi$ and $\sigma\left(c_{0}\right)=c_{0}$. We extend it to \mathcal{F} by:
(i) $\sigma(0)=0, \sigma(1)=1$;
(ii) if $g: D_{1} \rightarrow D_{2}$, then $\sigma(g)=\sigma \circ g \circ \sigma^{-1}: \sigma\left(D_{1}\right) \rightarrow \sigma\left(D_{2}\right)$. In other words, we have $(\sigma(g))(\sigma(x))=$ $\sigma(g(x))$ for all $x \in D_{1}$. In particular, $\sigma(\langle a, b\rangle)=\langle\sigma(a), \sigma(b)\rangle$.

Definition 3.1. We say that a functional $\theta \in \mathcal{F}$ is invariant if for all such σ, we have $\sigma(\theta)=\theta$.
Proposition 3.1. (i) For all $D \in \mathcal{D}$, we have that $\left.\sigma\right|_{D}$ is a permutation of D.
(ii) For all terms $t\left(x_{1}, \ldots, x_{n}\right)$ and functionals $\theta_{1}, \ldots, \theta_{n}$, we have that $\sigma\left(t\left(\theta_{1}, \ldots, \theta_{n}\right)\right)=t\left(\sigma\left(\theta_{1}\right), \ldots, \sigma\left(\theta_{n}\right)\right)$. In particular, all simple functionals are invariant.

4 Soundness and completeness

Theorem 4.1. Let A be an \mathcal{L}-sentence. Then the following are equivalent:
(i) $\mathbf{I Q C} \vdash A$;
(ii) there is a simple functional θ such that for all proof assignments $p: \theta \in p(A)$;
(iii) for all proof assignments p, there is a simple functional θ such that: $\theta \in p(A)$;
(iv) there is an invariant functional θ such that for all proof assignments $p: \theta \in p(A)$;
(v) for all proof assignments p, there is an invariant functional θ such that: $\theta \in p(A)$.
The implication $(v) \Rightarrow(i)$ is most difficult. We need to show: if IQC $\nvdash A$, then there exists a proof assignment p such that $p(A)$ contains no invariant functionals.

5 Setup for the proof

We consider the set $\Sigma=\omega^{<\omega} \cup\{U\}$, where U is some object not in $\omega^{<\omega}$. For $s, s^{\prime} \in \Sigma$, we say that $s \preceq s^{\prime}$ if either $s^{\prime}=U$, or $s, s^{\prime} \in \omega^{<\omega}$ and $s \sqsubseteq s^{\prime}$. To each $s \in \Sigma$, a countably infinite set $\Psi(s)$ (the domain at $s)$ is assigned, such that:
(i) if $s \preceq s^{\prime}$, then $\Psi(s) \subseteq \Psi\left(s^{\prime}\right)$;
(ii) if $s \preceq s^{\prime}$ and $s \neq s^{\prime}$, then $\Psi\left(s^{\prime}\right)-\Psi(s)$ is infinite.

Definition 5.1. A model will be a fallible Kripke model for \mathcal{L} on the frame and domains defined above. That is, a model is a relation \Vdash between elements of Σ and $\mathcal{L}(\Psi(U))$-sentences such that:
(i) if A is atomic then:

- if $s \Vdash A$, then A is an $\mathcal{L}(\Psi(s))$-sentence;
- if $s \Vdash A$ and $s \preceq s^{\prime}$, then $s^{\prime} \Vdash A$;
- if $s \Vdash \perp$ and A is an $\mathcal{L}(\Psi(s))$-sentence, then $s \Vdash A$.

In the following clauses, assume that A and B are $\mathcal{L}(\Psi(s))$-sentences:
(ii) $s \Vdash A \wedge B$ iff $s \Vdash A$ and $s \Vdash B$;
(iii) $s \Vdash A \vee B$ iff $s \Vdash A$ or $s \Vdash B$;
(iv) $s \Vdash A \rightarrow B$ iff for all s^{\prime} : if $s \preceq s^{\prime}$ and $s^{\prime} \Vdash A$, then $s^{\prime} \Vdash B$;
(v) $s \Vdash \exists x A$ iff there exists a $c \in \Psi(s)$ such that $s \Vdash A[c / x]$.
(vi) $s \Vdash \forall x A$ iff for all s^{\prime} such that $s \preceq s^{\prime}$ and $c \in \Psi\left(s^{\prime}\right)$, we have $s^{\prime} \Vdash A[c / x]$.

Theorem 5.1. Let A be an \mathcal{L}-sentence. If IQC $\nvdash A$, then there exists a model \Vdash such that $\rangle \Vdash A$.

6 The actual proof

Definition 6.1. Fix some one-to-one function q from Σ to the set of prime numbers. We define $\varphi: \Sigma \rightarrow \mathbb{N}$ as follows:

- $\varphi(\rangle)=1$,
- $\varphi(s * n)=\varphi(s) q(s * n)$ and
- $\varphi(U)=0$.

Definition 6.2. Every subset in Σ has a greatest lower bound (glb), namely the initial segment that all elements in the subset share. Define $s_{n}=\operatorname{glb}\{s: n \mid \varphi(s)\}$.

Impose the following structure on Γ and Π :

$$
\Gamma=\Pi=\bigcup\left\{\Psi\left(s_{n}\right) \times \mathbb{Z} / n \mathbb{Z}: n \in \mathbb{N}\right\}
$$

Note that we identified these sets with one another, even though they may not actually be the same. We just do this as a notational convenience. In addition we require this structure to be such that $c_{0} \in \Psi\left(s_{1}\right) \times \mathbb{Z} / 1 \mathbb{Z}$.

Definition 6.3. We define $\Gamma_{n}=\bigcup\left\{\Psi\left(s_{k}\right) \times \mathbb{Z} / k \mathbb{Z}: k \mid n\right\}$.
Definition 6.4. Any $c \in \Gamma$ is now actually an ordered pair. We denote \bar{c} for its first component. Similarly, for each $A \in \mathcal{L}(\Gamma)$ we define \bar{A} to be the formula with each constant c in A replaced by \bar{c}.

Definition 6.5. Define $\sigma: \Gamma \rightarrow \Gamma$ by $\sigma\left(\left\langle d,[i]_{n}\right\rangle\right)=\left\langle d,[i+1]_{n}\right\rangle$. Where $[i]_{n} \in \mathbb{Z} / n \mathbb{Z}$ denotes the equivalence class of the integer i modulo n.

Definition 6.6. To a model Φ we associate a proof assignment p that is given by

$$
p(A)=\bigcup\left\{\Psi\left(s_{n}\right) \times \mathbb{Z} / n \mathbb{Z}: s_{n} \Vdash \bar{A} \text { or } s_{n} \Vdash \perp\right\}
$$

for all atomic A.
Lemma 6.1. Let a model Φ be given, and let p be the proof assignment that is associated to it. Then for all $n \in \mathbb{N}$ and $A \in \mathcal{L}\left(\Gamma_{n}\right)$ we have that σ^{n} has a fixed element in $p(A)$ if and only if $s_{n} \Vdash \bar{A}$.

