Seminar on Models of Intuitionism

Hand-out lecture 9

20 April

1 Muchnik Degrees

Definition 1.1. A mass problem (mp) is a subset of $\mathbb{N}^{\mathbb{N}}$.

Definition 1.2. A solution to a mass problem \mathcal{A} is a recursive function $f \in \mathcal{A}$.

Definition 1.3. For $g: \mathbb{N} \to \mathbb{N}$, the class of *g*-partial recursive functions is the smallest class of functions

- containing g and the initial functions;
- closed under composition, primitive recursion and minimalisation.

Definition 1.4. Let $f, g: \mathbb{N} \to \mathbb{N}$. We say that f is *Turing reducible* to g (written $f \leq_T g$) if f is g-recursive.

Definition 1.5. Let \mathcal{A} and \mathcal{B} be mass problems. Then \mathcal{A} is *Muchnik reducible* to \mathcal{B} (written $\mathcal{A} \leq_w \mathcal{B}$) if for every $g \in \mathcal{B}$ there is some $f \in \mathcal{A}$ with $f \leq_T g$.

Definition 1.6. We write \equiv_w for the equivalence relation generated by \leq_w and we call the equivalence class $[\mathcal{A}]$ of a mass problem \mathcal{A} its *Muchnik degree*. Further, we write \mathfrak{M}_w for poset of Muchnik degrees, where $[\mathcal{A}] \leq [\mathcal{B}]$ iff $\mathcal{A} \leq_w \mathcal{B}$.

Definition 1.7. A Muchnik mass problem (Mmp) \mathcal{A} is a mass problem satisfying: if $f \in \mathcal{A}$ and $f \leq_T g$, then $g \in \mathcal{A}$.

Lemma 1.8. For every mass problem \mathcal{A} , there is a unique Muchnik mass problem $C(\mathcal{A})$ such that $\mathcal{A} \equiv_w C(\mathcal{A})$.

Lemma 1.9. The set \mathfrak{M}_w is a complete (bounded) lattice with least element the Muchnik degree of any mass problem containing a recursive function and top element $[\emptyset]$. Joins and meets are given by: $\bigwedge_{i \in I} [\mathcal{A}_i] = [\bigcup_{i \in I} \mathcal{A}_i]$ and $\bigvee_{i \in I} [\mathcal{A}_i] = [\bigcap_{i \in I} C(\mathcal{A}_i)]$ where $\{A_i \mid i \in I\}$ is a collection of mass problems.

Remark 1.10. We will extend the notation for joins and meets to mass problems, for a collection of mass problems $\{A_i \mid i \in I\}$ we will write $\bigwedge_{i \in I} A_i$ for $\bigcup_{i \in I} A_i$ and $\bigvee_{i \in I} A_i$ for $\bigcap_{i \in I} C(A_i)$. **Lemma 1.11.** The Muchnik degree of the set $0' := \{g : \mathbb{N} \to \mathbb{N} \mid g >_T Z\}$ is the least non-zero Muchnik degree.

Lemma 1.12. The lattice \mathfrak{M}_w is a Heyting algebra.

2 Logic in Heyting Algebras

Definition 2.1. Let H be a Heyting algebra. A propositional formula φ with n variables is *true in* H if $\varphi(a_1, \ldots, a_n) = 1$ for all $a_1, \ldots, a_n \in H$. The set of true propositional formulas in H is denoted by Th(H).

Lemma 2.2. For any Heyting algebra H we have $IPC \subseteq Th(H)$.

Lemma 2.3. (Jaśkowski) $IPC = \bigcap \{Th(H) \mid H \text{ a finite Heyting algebra} \}.$

Lemma 2.4. Suppose H_0 and H_1 are Heyting algebras and suppose $F: H_0 \to H_1$ is a Heyting algebra homomorphism. We have

(1) If F is injective, then $Th(H_1) \subseteq Th(H_0)$.

(2) If F is surjective, then $Th(H_0) \subseteq Th(H_1)$.

3 Not Double Diamond-Like Lattices

Definition 3.1. Let *L* be a lattice. An element $a \in L$ is called *join-irreducible* if for any $b, c \in L$ we have $a = b \lor c$ implies a = b or a = c. In a similar fashion we also define *meet-irreducibility*.

Definition 3.2. A lattice L is called *not double diamond-like (not dd-like)* if whenever $a, b \in L$ are join-irreducible, then so is $a \wedge b$.

Lemma 3.3. Let H be a Heyting algebra and let $a, b \in H$ be such that a < b. Then $H[a,b] := \{x \in H \mid a \leq x \leq b\}$ is again a Heyting algebra with $0_{[a,b]} = a$, $1_{[a,b]} = b$ and $x \rightarrow_{[a,b]} y = b \land (x \rightarrow y)$. We abbreviate H[0,b] by $H(\leq b)$ and H[a,1] by $H(\geq a)$.

Lemma 3.4. (Terwijn) A finite distributive lattice is isomorphic to an initial segment of \mathfrak{M}_w iff it is not dd-like and 0 is meet-irreducible.

Definition 3.5. We call a lattice *nice* if is finite and not dd-like.

Definition 3.6. We write I_1 for the two element Heyting algebra. Given two Heyting algebras A and B, let A + B be the Heyting algebra by stacking B on top of A and identifying 1_A with 0_B . For any Heyting algebra H, we write $H^+ = H + I_1$ and $H_+ = I_1 + H$.

Lemma 3.7. IPC = $\bigcap \{ Th(H) \mid H \text{ a nice Heyting algebra with 1 join-irreducible} \}$

4 Logic of Muchnik Degrees

Theorem 4.1. $\operatorname{Th}(\mathfrak{M}_w(\geq 0')) = \mathbf{IPC}.$

Definition 4.2. A proposition formula φ is called *positive* if it does not contain \bot and \neg . Given a set I of propositional formulas, we define the *positive fragment* of I as $I^{\text{pos}} := \{\varphi \in I \mid \varphi \text{ is positive}\}.$

Definition 4.3. Let $\mathbf{IPC} + \neg \varphi \lor \neg \neg \varphi$ denote the intermediate propositional logic obtained by adding to \mathbf{IPC} the *weak law of excluded middle* (WLEM), i.e. the axiom scheme $\neg \varphi \lor \neg \neg \varphi$ where φ is any propositional formula.

Lemma 4.4. (Jankov) **IPC** + $\neg \varphi \lor \neg \neg \varphi$ is the \subseteq -largest intermediate logic I containing WLEM and such that **IPC**^{pos} = I^{pos} .

Lemma 4.5. Let H be a Heyting algebra. Then $\operatorname{Th}(H_+)^{\operatorname{pos}} \subseteq \operatorname{Th}(H)^{\operatorname{pos}}$.

Lemma 4.6. If H is a Heyting algebra with 0 meet-irreduicble, then for any propositional formula φ we have $\neg \varphi \lor \neg \neg \varphi \in \text{Th}(H)$, i.e. $WLEM \subseteq \text{Th}(H)$.

Theorem 4.7. Th(\mathfrak{M}_w) = **IPC** + $\neg \varphi \lor \neg \neg \varphi$.