Seminar Constructible Sets: Handout 10

Anton Golov

April 28, 2018

Definition 1. A subset *E* of a limit ordinal α is said to be *stationary* in λ iff *E* has a non-empty intersection with every club subset of λ .

Definition 2. Let λ be an ordinal and $E \subseteq \lambda$. A function $f : E \to \lambda$ is *regressive* if for every non-zero $\alpha \in E$, $f(\alpha) < \alpha$.

Lemma 3 (Homework). Given an uncountable regular cardinal λ , a set $E \subseteq \lambda$ is stationary in λ iff every reductive function $E \to \lambda$ is constant on some unbounded subset of E.

Definition 4. The *diamond principle* \diamond is the statement

There is a sequence $(S_{\alpha} | \alpha < \omega_1)$ such that $S_{\alpha} \subseteq \alpha$, with the property that whenever $X \subseteq \omega_1$, the set $\{\alpha \in \omega_1 | X \cap \alpha = S_{\alpha}\}$ is stationary in ω_1 .

Theorem 5 (Devlin III 3.2). \diamond implies the existence of a Souslin tree.