Handout Chapter I section 11 Chapter II section 1-2 Seminar Constructible Sets Olle Torstensson & Tristan van der Vlugt

Reminder (lemma I.9.11). Let $\Phi(\vec{x})$ be a Σ_0 formula of LST and let $\varphi(\vec{x})$ be its counterpart in \mathscr{L} , then

 $\mathsf{ZF} \vdash \forall u (\forall \vec{x} \in u) \left[\Phi^u(\vec{x}) \leftrightarrow \vDash_u \varphi\!\left(\vec{\mathring{x}}\right) \right]$

Reminder (lemma I.9.15). Let $\Phi(\vec{x})$ be a Σ_0 formula of LST and let $\varphi(\vec{x})$ be its counterpart in \mathscr{L} , then

 $\mathsf{ZF} \vdash \text{``For } M \text{ a transitive set, } (\forall \vec{x} \in M) \left[\Phi(\vec{x}) \leftrightarrow \vDash_M \varphi\!\left(\vec{\mathring{x}} \right) \right] \text{''}$

1.11) Kripke-Platek Set Theory & Admissible sets

Definition 1. KP (Kripke-Platek set theory) is the theory given by the axioms of BS enriched with Δ_0 -collection:

- (i) Axiom of Extensionality
- (ii) Axiom of Induction
- (iii) Axiom of Pairing
- (iv) Axiom of Union
- (v) Axiom of Infinity
- (vi) Axiom of Cartesian Product
- (vii) Axiom schema of Δ_0 -Comprehension
- (viii) Axiom schema of Δ_0 -Collection

Reminder (amenable sets). A set M is **amenable**, if it is transitive and satisfies

- (i) $(\forall x \in M) (\forall y \in M) (\{x, y\} \in M)$
- (ii) $(\forall x \in M) (\bigcup x \in M)$
- (iii) $\omega \in M$
- (iv) $(\forall x \in M) (\forall y \in M) (x \times y \in M)$
- (v) If $R \subseteq M$ is $\Sigma_0(M)$, then $(\forall x \in M)(R \cap x \in M)$

Definition 2. A set M is admissible, if M is amenable and satisfies

(vi) If a relation $R \subseteq M \times M$ is $\Sigma_0(M)$ and $(\forall x \in M)(\exists y \in M)(y \mid R \mid x)$, then for any $u \in M$ there is a $v \in M$ such that $(\forall x \in u)(\exists y \in v)(y \mid R \mid x)$

Lemma 3. Let $\Phi(x, y, \vec{p})$ be Σ_1 , and $\Psi(z, \vec{p})$ be Δ_1^{KP} then

$$\begin{split} \mathsf{KP} \vdash \forall \vec{p} \left[\forall x \exists y \Phi(x, y, \vec{p}) \to \forall u \exists v (\forall x \in u) (\exists y \in v) \Phi(x, y, \vec{p}) \right] & (\Sigma_1 \text{-Collection}) \\ \mathsf{KP} \vdash \forall \vec{p} \left[\forall x \exists y \forall z (z \in y \leftrightarrow z \in x \land \Psi(z, \vec{p})) \right] & (\Delta_1 \text{-Comprehension}) \end{split}$$

Lemma 4 (Recursion Theorem). Let G be a total (n+2)-ary Σ_1^{KP} function over V. Then there is a total (n+1)-ary Σ_1^{KP} function F over V such that

$$\mathsf{KP} \vdash F(\vec{x}, y) = G(\vec{x}, y, (F(\vec{x}, z) \mid z \in y)).$$

2.1) Definition of the Constructible Universe

Reminder (definition of x-definable). A subset y of x is x-definable iff there is a formula $\varphi(v)$ of \mathscr{L}_x such that $y = \{a \in x \mid \vDash_x \varphi(a)\}$. Define Def(x) to be the set of x-definable subsets of x.

Def(u) can be defined in LST as:

$$\begin{aligned} v &= \mathrm{Def}(u) &\leftrightarrow (\forall x \in v) (\exists \varphi) \Big[\mathrm{Fml}(\varphi, u) \wedge \mathrm{Fr}(\varphi, \{v_0\}) \\ &\wedge x = \big\{ z \in u \mid (\exists \psi) (\mathrm{Sub}(\psi, \varphi, v_0, \mathring{z}) \wedge \mathrm{Sat}(u, \psi)) \big\} \Big] \\ &\wedge (\forall \varphi) \Big[(\mathrm{Fml}(\varphi, u) \wedge \mathrm{Fr}(\varphi, \{v_0\})) \\ &\to (\exists x \in v) (x = \big\{ z \in u \mid (\exists \psi) (\mathrm{Sub}(\psi, \varphi, v_0, \mathring{z}) \wedge \mathrm{Sat}(u, \psi)) \big] \end{aligned}$$

Definition 5. By recursion on $\alpha \in On$ we define

$$L_0 = \emptyset, \qquad L_{\alpha+1} = \operatorname{Def}(L_{\alpha}), \qquad L_{\gamma} = \bigcup_{\alpha < \gamma} L_{\alpha} \text{ if } \gamma \text{ is limit}, \qquad L = \bigcup_{\alpha \in On} L_{\alpha}.$$

The set L is the constructible universe. A set x is constructible iff $x \in L$.

Lemma 6. The constructible hierarchy has the following properties:

- (i) $\alpha \leq \beta$ implies $L_{\alpha} \subseteq L_{\beta}$.
- (ii) L_{α} is transative for each α . (*L* is transitive).
- (iii) $L_{\alpha} \subseteq V_{\alpha}$ for all α .
- (iv) $\alpha < \beta$ implies $\alpha \in L_{\beta}$ and $L_{\alpha} \in L_{\beta}$. (On $\subseteq L$).
- (v) $L \cap \alpha = L_{\alpha} \cap \text{On} = \alpha$ for all α .
- (vi) $L_{\alpha} = V_{\alpha}$ for $\alpha \leq \omega$.
- (vii) $|L_{\alpha}| = |\alpha|$ for $\alpha \ge \omega$.

Definition 7. Let M be a transitive proper class and T a theory in LST, then M is an **inner model** of T if for every axiom Φ of T we have $T \vdash \Phi^M$.

Theorem 8. The class L is an inner model of ZF. In fact $ZF \vdash (AoC)^L$ (this will be treated next week).

2.2) Constructibility

Lemma 9. L_{α} is amenable for each uncountable limit ordinal α .

Reminder (uniformly $\Delta_n^{\mathbf{M}}$). Given a family of classes \mathscr{F} and a class $\mathcal{A} = \{\vec{x} \mid \Phi(\vec{x})\}$ of *m*-tuples defined by LST formula Φ , we say \mathcal{A} is uniformly $\Delta_n^{\mathbf{M}}$ if there are is a Σ_n formula $\varphi_1(\vec{x})$ and Π_n formula $\varphi_2(\vec{x})$ of \mathscr{L} such that for each $\mathbf{M} \in \mathscr{F}$ we have $A \cap M^m = \{\vec{x} \mid \vDash_{\mathbf{M}} \varphi_i(\vec{x})\}$.

Remark 10. Devlin states that the class defined by Sat (that is $\{(u, \varphi) \mid \text{Sat}(u, \varphi)\}$) is uniformly Δ_1^M for amenable sets M. This is **false**, as Mathias gives a countermodel. It can be fixed by defining $\mathcal{S}(x)$ to be the set of finite subsets of x, and letting M be an \mathcal{S} -amenable set, which is an amenable set such that $x \in M$ implies $\mathcal{S}(x) \in M$. Now the class Sat is $\Delta_1^{M^S}$ for \mathcal{S} -amenable sets M^S .

Definition 11. For an LST formula $\Phi(\vec{x})$, let (*) and (**) be the following properties: (*) $\Phi(\vec{x})$ is Δ_1^{KP} . (**) The class $\{\vec{x} \mid \Phi(\vec{x})\}$ is uniformly $\Delta_1^{L_{\alpha}}$, for all uncountable limit ordinals α . We define the following LST formulas:

$$\begin{aligned} \operatorname{Seq}(y,x): & \exists f \Big[``f \text{ is a function''} \wedge \operatorname{dom}(f) = \omega \wedge f(0) = \varnothing \wedge y = \bigcup \operatorname{ran}(f) \\ & \wedge (\forall n \in \omega) (\forall s \in f(n+1)) (\exists t \in f(n)) (\exists a \in x) \Big(s = t \cup \{(a,n)\} \Big) \\ & \wedge (\forall n \in \omega) (\forall s \in f(n)) (\forall a \in x) (\exists t \in f(n+1)) \Big(t = s \cup \{(a,n)\} \Big) \Big] \\ \operatorname{Pow}(y,x): & \exists z \Big[\operatorname{Seq}(z,x) \wedge y = \{\operatorname{ran}(u) \mid u \in z\} \Big] \end{aligned}$$

Lemma 12. Seq(y, x) satisfies (*) and (**).

Lemma 13. Pow(y, x) satisfies (*) and (**).

Lemma 14. There is an LST formula D(v, u) such that $D(v, u) \leftrightarrow v = \text{Def}(u)$. Moreover, D(v, u) satisfies (*) and (**).

Lemma 15. There is an LST function $G(f, \alpha)$ such that G is true iff $f : \alpha + 1 \to L$ sends $\beta \mapsto L_{\beta}$. Moreover, $G(f, \alpha)$ satisfies (*) and (**).

Let $H(x, \alpha)$ be the LST formula that says " $x = L_{\alpha}$ ", which is defined as $H(x, \alpha) \leftrightarrow \exists f[G(f, \alpha) \land (x = f(\alpha))]$.

Lemma 16. $H(x, \alpha)$ satisfies (*) and (**).

Lemma 17. If M is an inner model of KP, and α an ordinal, then $L_{\alpha} \in M$ and $(L_{\alpha})^M = L_{\alpha}$. Hence $(L)^M = L$

Corollary 18.

- (i) If M is an admissible set and $\lambda = \sup(M \cap \operatorname{On})$, then for $\alpha < \lambda$ we have $(L_{\alpha})^M = L_{\alpha}$. Hence $(L)^M = L_{\lambda}$.
- (ii) For any α we have $(L_{\alpha})^{L} = L_{\alpha}$. Hence $(L)^{L} = L$.
- (iii) For $\alpha > \omega$ a limit ordinal and $\gamma < \alpha$ we have $(L_{\gamma})^{L_{\alpha}} = L_{\gamma}$. Hence $(L)^{L_{\alpha}} = L_{\alpha}$.

Lemma 19. The LST formula " $x \in L$ " (that is, x is constructible) is Σ_1^{KP} .

Definition 20. The Axiom of Constructibility (also *Hypothesis of Constructibility*) is the statement $\forall x (x \in L)$. Equivalently this means V = L.

Theorem 21. $\mathsf{ZF} \vdash (V = L)^L$.

Exercises 1

Exercise 1. Prove that the Axiom of Cartesian Product holds in the inner model L

$$\mathsf{ZF} \vdash (\forall x \forall y \exists z \forall u [u \in z \leftrightarrow (\exists a \in x) (\exists b \in y) (u = \langle a, b \rangle)])^L$$

without assuming II.1.2. However, you may assume that

$$\mathsf{ZF} \vdash \forall x \forall y \exists z \forall u [u \in z \leftrightarrow (\exists a \in x) (\exists b \in y) (u = \langle a, b \rangle)].$$

Exercise 2. Let Add(s, a, b) be the LST formula that states "s = a + b" \wedge "a, b, s are natural numbers".

- a) Prove that $\operatorname{Add}(s, a, b)$ is Δ_1^{KP} . (*) b) Prove that the class defined by Add is uniformly $\Delta_1^{L_{\alpha}}$ for $\alpha > \omega$ limit. (**)