Seminar Constructible Sets

Handout session 6: Chapter II, sections 3-5

2018-03-28

Cheatsheet

Theorem 1 (Collapsing Lemma, 1.7.1). Let X be an extensional set. Then there is a unique
transitive set M and a unique bijection w: X — M such that

m: (X, €)= (M,e€).

Moreover, if Y C X is transitive, then m|y = Idy.

Lemma 2 (1.9.11). Let ®(Z) be any formula of LST and let ¢(Z) be its counterpart in L. Then

ZF b Yuvz € u[®"(Z) ¢y 6(2)]

Lemma 3 (1.9.15). Let ®(z) be a Xo-formula of LST and let ¢(Z) be its counterpart in £. Then

ZF + “For any transitive set M,V € M[®(Z) <= o(2)]”

The Axiom of Choice in L

Proposition 4. Let © € Loy1. Then there is a formula ¢(0) of £ such that:

o

T = {z € La’ ):La d)(%:lo;’h? cee 7L’Yn)}

for some ordinals y1, . ..,Vn. In particular this means that x can be defined by a formula which has
no individual constant symbols, next to the L., .

With these definitions, we can define a well-order <, on sets of the constructible universe.

Definition 5 (<: a well-order of constructible sets). Let z,y € L. We say that x <p y if and
only if either of the following conditions hold:

1. The minimal « such that x € L1 is smaller than the least 5 such that y € Lg4.

2. The a and 8 defined above are the same, and the <-least formula ¢(¥) of £ such that

x ={z € L,| Fr, ¢z, l‘]}%, e ,lo)%)}, for some sequence of ordinals 71, ..., v, <-precedes
the <-least formula ¢(7) of .2 such that y = {2 € La| FFr, ¥(%,Ly,..., Ly )}, for some
sequence of ordinals 1, ..., 7).



3. The formulas ¢ and v defined above are the same, but the <*-least sequence 71, ..., v, which
defines z as in condition 2 <*-precedes the <*-least sequence 7], ...,~, which defines y as in
condition 2.

Definition 6. In this definition, we construct several logical formulas, and we will combine them
step by step to construct a formula which expresses a well-order.

e We define the formula N(«,z,®,t) to be an LST-formula which says that ¢ is a formula of
£, tis a finite sequence of ordinals bounded by «, ¢ has free variables vy, ..., v,, where n is
the length of ¢ and we have that = = {z € L,| 1, ¢(§,1it(0), .. ,Iojt(n_l))}. An example of
this is on page 73 of [1].

Define M (o, x, ¢) as:
(N (a, z,¢,)) AV (3 (N (0, 2,6,t) = (0= ¢'V § < ¢))

Define P(a, x, ¢,t) as:

N(a,z,¢0,t) AV (N(a,2,0,t") = (t =t vi <))

Define Q(z,y, «) as:
€ Lot1 Ne ¢ Lo ANy € Lag1 Ny ¢ Lo
(3, (M (e, z, ¢) N M (v, z,90) N <)V
(M (e, x, p) A M (v, y, ) A s, t(P(a, x, d, ) AN Pla,y, d,t) As <* t)))

Now, we define the formula WO(z, y) as follows:
Ja(z € La Ny ¢ La) V 3adw(w = Lmax(w,a+4) A R(z,y, o, w))

Here we have that R(x,y,a,w) is Q(z,y, ) with all unbounded quantifiers bounded by the
value w.

Lemma 7 (3.2). The formula WO(z,y) as constructed above is AFPHV:L).

Lemma 8 (3.3). Let wo(z,y) be the equivalent in £ of WO(x,y). For z,y € L, we then have
that:
WO($7y) H’:LW Wo(i'vzj)

where v = max(w, « + 5)

Proposition 9 (3.6). There is a 31 formula of LST Enum(«, x), which is absolute for L and for
which it holds that:
KPt+ F = {(z,a) Enum(a,z)} - F : On <> L

Corollary 10 (3.8). ZF I (AC)*
Corollary 11 (4.1). If ZF is consistent, then so too is ZFC.

Corollary 12 (4.2). If ZF is consistent, then so too is ZFC + (V = L).



The Generalized Continuum Hypothesis in L

Definition 13. Let M and N be structures, we say that

e N is a substructure of M if N C M and

FN ¢ <=FwM ¢

for all atomic #N-sentences ¢.

e N is a X, -elementary substructure of M (denote N <, M) if the above holds for all 3,
ZN-sentences.

e Nis an elementary substructure of M (denote N < M) if the above holds for all #x-sentences.

Theorem 14 (Condensation Lemma, 5.2). Let o be a limit ordinal. If
X <1 Ly
then there are unique ™ and B such that 8 < a and:
(i) m: (X, €)= (Lg, €),
(ii) for transitive Y C X, |y = Idy,
(i1i) w(x) <p x forallz € X.
Lemma 15 (5.3). Let « be a limit ordinal, and X C L. Let M be the set of all elements of Ly

that are definable in Ly, from X (i.e. a € M if and only if there is an Lx-formula ¢ such that a

is unique with |=r_, ¢(a)).
Then
XCM<L,

and M 1is the smallest such substructure.
Corollary 16 (5.4). |M| = max(|X|,w).

Lemma 17 (5.5). Assume V = L. Let k be a cardinal, and let v C L, for some o < k. Then
x € L.

Theorem 18 (5.6). V = L implies GCH.

Corollary 19 (5.8). If ZF is consistent, then so too is ZF + GCH.



Exercises
Exercise 1. In the proof of Lemma 8, (Lemma 3.3(i) in [1]), we give v the value max(w, a + 5).

Show why this value works for this proof.

Exercise 2. Show that the formula Enum(a, z) as is shown in Lemma 3.6 in [1] fulfils the prereq-
uisites of that lemma. That is, show that it is absolute for L and argue why the main statement
holds in KP.

Exercise 3. In this exercise we assume V = L. For each of the following statements, determine
whether or not they are true (and explain why).
(i) A set X is finite! if and only if every injection X — X is also a surjection.

(ii) There is infinite x such that k* # ™.

(iii) The first uncountable cardinal w; is singular.
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1Recall that we defined a set X to be finite if there is a bijection n — X for some natural number n.



