Seminar Constructible Set Theory: Handout 7

Anton Golov & Mireia Martínez i Sellarès

April 16, 2018

Today, we will look at the Souslin Problem: a question about whether certain conditions are sufficient to characterize the real number up to order-isomorphism. The Souslin problem cannot be solved in $\mathbf{ZFC} + \mathbf{GCH}$, but can be solved in $\mathbf{ZF} + V = L$.

1 Ordered Sets and \mathbb{R}

Definition 1. A *densely ordered set* is a linearly ordered set $\langle X, \leq \rangle$ such that whenever $x, z \in X$ and x < z, there is a $y \in X$ such that x < y < z.

We will sometimes denote $\langle X, \leq \rangle$ simply by X.

Definition 2. An *interval* in a linearly ordered set $\langle X, \leq \rangle$ is a subset of X of the form

$$(x, z) = \{ y \in X \mid x < y < z \}$$

Definition 3. An *ordered continuum* is a densely ordered set such that every non-empty subset of every interval has an infimum and a supremum.

Definition 4. A linearly ordered set is said to be *open* if it has no end-points.

Definition 5. A subset Y of a densely ordered set $\langle X, \leq \rangle$ is said to be *dense* in X if for any $x, z \in X$ such that x < z there is a $y \in Y$ such that x < y < z.

Theorem 1 (Cantor). Every open, ordered continuum containing a countable dense subset is order-isomorphic to \mathbb{R} .

2 The Souslin Property and Souslin's Hypothesis

Definition 6. We say a linearly ordered set X has the Souslin Property if every set of pairwise disjoint, non-empty intervals of X is countable.

The Souslin Hypothesis states that every open, ordered continuum with the Souslin Property is order-isomorphic to \mathbb{R} .

Lemma 2. The Souslin Hypothesis holds iff every densely ordered set with the Souslin Property has a countable dense subset.

Souslin's Hypothesis is independent of ZFC. However, it fails when V = L.

3 Trees

Definition 7. A tree is a partially ordered set $\mathbf{T} = \langle T, \leq_T \rangle$ such that for every $x \in T$, the set

$$\hat{x} = \{ y \in T \mid y <_T x \}$$

is well-ordered by \leq_T .

Definition 8. The *height* of an element x in a tree **T** is the order-type of \hat{x} under $<_T$; that is, the unique ordinal α such that there is an order-isomorphism between \hat{x} and α .

We denote the height by $ht_{\mathbf{T}}(x)$.

Definition 9. A *level* of a tree \mathbf{T} is the set containing all elements of a certain height.

For any ordinal α , we denote the α -th level of **T** by T_{α} ; this is the set

$$T_{\alpha} = \{ x \in T \mid ht_{\mathbf{T}}(x) = \alpha \}$$

We use $T \upharpoonright \alpha$ to denote $\bigcup_{\beta < \alpha} T_{\beta}$ and $\mathbf{T} \upharpoonright \alpha$ for the restriction of the structure \mathbf{T} to this set.

Definition 10. A branch of **T** is a downwards-closed linearly ordered subset b of T. A branch is maximal if it is not properly contained in any other branch. For any ordinal α , an α -branch is a branch with order-type α .

By the Axiom of Choice, every branch can be extended to a maximal branch.

Definition 11. An *antichain* of **T** is a subset c of T such that for all distinct $x, y \in c, x$ and y are not comparable. An antichain is *maximal* if it is not properly contained in any other antichain.

By the Axiom of Choice, every antichain can be extended to a maximal antichain.

Definition 12. Let θ be an ordinal and λ a cardinal. A tree **T** is a (θ, λ) -tree if the following conditions hold:

- (i) $(\forall \alpha < \theta)(T_{\alpha} \neq \emptyset);$
- (ii) $T_{\theta} = \emptyset;$
- (iii) $(\forall \alpha < \theta)(|T_{\alpha}| < \lambda).$

Definition 13. A tree **T** has unique limits if whenever α is a limit ordinal and $x, y \in T_{\alpha}$, if $\hat{x} = \hat{y}$ then x = y.

Definition 14. A (θ, λ) -tree **T** is *normal* if it has unique limits and the following conditions hold:

- (i) $|T_0| = 1;$
- (ii) If $\alpha, \alpha + 1 < \theta$ and $x \in T_{\alpha}$, there there exist distinct $y_1, y_2 \in T_{\alpha+1}$ such that $x <_T y_1$ and $x <_T y_2$;

(iii) if $\alpha < \beta < \theta$ and $x \in T_{\alpha}$, there is a $y \in T_{\beta}$ such that $x <_T y$.

For infinite cardinals κ , a κ -tree is a normal (κ , κ)-tree.

Lemma 3. Every ω_0 -tree has an ω_0 -branch.

Definition 15. An Aronszajn tree is an ω_1 -tree with no ω_1 branch.

Theorem 4 (1.1 in Devlin). There exists an Aronszajn tree.

4 Souslin Trees

Definition 16. A Souslin tree is an ω_1 -tree with no uncountable antichain.

Theorem 5 (1.2 in Devlin). Every Souslin tree is an Aronszajn tree.

- **Lemma 6** (1.3 in Devlin). (i) Let T be an (ω_1, ω_1) -tree with unique limits, having no uncountable branch. Then there is a subset T^* of T such that, under the induced ordering, T^* is an Aronszajn tree.
- (ii) Let T be an (ω_1, ω_1) -tree with unique limits, having no uncountable antichain. Then there is a subset T^* of T such that, under the induced ordering, T^* is a Souslin tree.

Theorem 7 (1.4 in Devlin). Souslin's Hypothesis is equivalent to the non-existence of a Souslin tree.

Exercises

Exercise 1 (a). Let X be a subset of an interval $I \subset \mathbf{R}$, such that for every $q \in I \cap \mathbf{Q}$ and every $k \in \mathbf{N}$, there is an $x(q,k) \in X \cap (q-2^{-k}, q+2^{-k})$. Show that there is a countable subset of X that is dense in I.

Exercise 1 (b). Show that if X is a dense subset of an interval $I \subset \mathbf{R}$, then it is contains a countable subset dense in I.

Exercise 2. Prove that the set $\langle X, \langle X \rangle$ defined in the proof of the left-to-right implication of Theorem 1.4 of Devlin is a densely ordered set of cardinality 2^{ω} .