Seminar Constructible Sets

Handout session 9: Kurepa trees and Inaccessible cardinals

2018-04-18

Inaccessible cardinals

Definition 1. Let κ be an uncountable cardinal. We say that κ is *weakly inaccessible* if it is a regular limit cardinal.

If κ is a regular *strong* limit cardinal, that is, if it satisfies

 $2^{\lambda} < \kappa \quad \text{(for all } \lambda < \kappa),$

then we call κ strongly inaccessible or just inaccessible.

Remark. If GCH is true, then any cardinal is weakly inaccessible if and only if it is strongly inaccessible.

Proposition 2. In **ZFC** we have that V_{κ} is a model of **ZFC** if κ is inaccessible. In **ZF** we have that L_{κ} is a model of **ZFC** if κ is weakly inaccessible.

Let **I** be the sentence expressing "There exists an inaccessible cardinal" and let **WI** be the sentence expressing "There exists a weakly inaccessible cardinal".

Corollary 3. (i) $\mathbf{ZFC} \nvDash \mathbf{I}$ and $\mathbf{ZFC} \nvDash \mathbf{WI}$

(ii) If **ZFC** is consistent, then $\mathbf{ZFC} + \neg \mathbf{I}$ is consistent.

Relative Constructibility

For this whole section, let A be an arbitrary set.

Definition 4. Given a set X, we define $Def^A(X)$ as the set of all subsets of X definable in $\langle X, \in, A \cap X \rangle$ by an $\mathscr{L}_X(\mathring{A})$ -formula having one free variable. Then we define by recursion the hierarchy of sets constructible relative to A as

 $L_0[A] = \emptyset,$ $L_{\alpha+1}[A] = Def^A(L_{\alpha}[A]),$

 $L_{\lambda}[A] = \bigcup_{\alpha < \lambda} L_{\alpha}[A]$ for λ limit ordinal; and

the universe of sets constructible relative to A as $L[A] = \bigcup_{\alpha \in \mathbf{On}} L_{\alpha}[A]$.

Remark. $L \subseteq L[A]$

Lemma 5. (i) $\gamma \leq \alpha \implies L_{\gamma}[A] \subseteq L_{\alpha}[A]$.

(ii) $L_{\alpha}[A]$ is transitive for all α , and thus L[A] is transitive.

Proposition 6. L[A] is an inner model of **ZFC**.

Lemma 7. Let $\overline{A} = A \cap L[A]$.

- (i) $\bar{A} \in L[A]$.
- (*ii*) $(V = L[\bar{A}])^{L[A]}$.

Kurepa Trees and Inaccessible Cardinals

Definition 8. A Kurepa tree is an ω_1 -tree with ω_2 or more ω_1 -branches.

Theorem 9 (Solovay, appears as §4 in [2]). If $X \subseteq \omega_1$ and V = L[X], then a Kurepa Tree exists.

Lemma 10. For every set X and any ordinal α we have that $\omega_{\alpha}^{L[X]} \leq \omega_{\alpha}$ as ordinals in V.

Theorem 11 (Page 9 in [2]). If there is no Kurepa Tree, then ω_2 is inaccessible in L.

Corollary 12. If ZFC + "there is no Kurepa Tree" is consistent, then so too is <math>ZFC + I.

Exercises

Exercise 1. For an arbitrary set A, let $\overline{A} = A \cap L[A]$ and prove that for all ordinals α , $L_{\alpha}[A] = L_{\alpha}[\overline{A}]$ and thus $L[A] = L[\overline{A}]$.

Exercise 2. We will prove Lemma 10 in detail. Let X be any set, prove the following facts. In each part you may of course use the preceding parts.

- (a) Show that if κ is a cardinal in V, then κ is also a cardinal in L[X].
- (b) Show that for any ordinal α , we have that $\omega_{\alpha}^{L[X]}$ is an ordinal in V.
- (c) Show that for any ordinal α we have $\omega_{\alpha}^{L[X]} \leq \omega_{\alpha}$ as ordinals in V.

References

- [1] Keith J. Devlin, *Constructibility*, Springer-Verlag Berlin, ISBN 0-387-13258-9, 1984.
- [2] Thomas J. Jech, Trees, The Journal of Symbolic Logic, Vol. 36, No. 1, pp.1-14 1971.