Seminar Constructible Sets

Model solution session 3

2018-03-14

Exercise 1

In ZF we 'only' have the axiom of "set foundation", that is:

$$
\forall x(x \neq \emptyset \rightarrow \exists y \in x(x \cap y=\emptyset)) .
$$

In BS we have the axiom of "full foundation", which may seem stronger. Prove that "full foundation" is a derivable in ZF (hint: you will want to use the transitive closure of a set described in [1, page 12]).

Solution to exercise 1 (4pt)

Let A be a non-empty class, we will show that there is a set in A that is disjoint from A. Let x be (1pt) a set in A, if it happens to be the case that $x \cap A=\emptyset$, then we are done already.

If $x \cap A$ is non-empty, we consider $\mathrm{TC}(x)$, the transitive closure of x, and note that since
(1pt) $x \subseteq \mathrm{TC}(x)$ we have that $\mathrm{TC}(x) \cap A \neq \emptyset$.
By separation, $\mathrm{TC}(x) \cap A$ is a set, so using set foundation we find $y \in \mathrm{TC}(x) \cap A$ such that (1pt) $y \cap \mathrm{TC}(x) \cap A=\emptyset$.

We claim that this y is also disjoint from A. Suppose it is not, then there is $z \in y \cap A$. Since $z \in y \in \mathrm{TC}(x)$ and $\mathrm{TC}(x)$ is transitive, we must have that $z \in \mathrm{TC}(x)$. However, that means that $z \in y \cap \mathrm{TC}(x) \cap A$, which contradicts the choice of y. Therefore y is disjoint from A, which
(1pt) concludes our proof.

Exercise 2

Let T be a theory, $n \in \mathbb{N}$ and let $\phi(x)$ be a Σ_{n} formula such that

$$
\begin{aligned}
& T \vdash \exists x(\phi(x)) \\
& T \vdash \phi(x) \leftrightarrow \forall y(\phi(y) \rightarrow x=y)
\end{aligned}
$$

Show that $\phi(x)$ is Δ_{n}^{T}.

Solution to exercise $2(2 \mathrm{pt})$

The second condition is actually sufficient. If $n=0$ then the statement is trivial. Otherwise, since ϕ is a Σ_{n} formula, there is a Π_{n-1} formula $\phi^{\prime}(x, \vec{y})$ such that $\phi(x)$ is of the form $(\exists \vec{z}) \phi^{\prime}(x, \vec{z})$. We can thus rewrite the second condition to be

$$
T \vdash \phi(x) \leftrightarrow \forall y\left((\exists \vec{z}) \phi^{\prime}(y, \vec{z}) \rightarrow x=y\right) .
$$

By contraposition, this is equivalent to

$$
T \vdash \phi(x) \leftrightarrow \forall y\left(x \neq y \rightarrow(\forall \vec{z}) \neg \phi^{\prime}(x, \vec{z})\right) .
$$

Since for any α and β with \vec{z} not free in $\alpha, \alpha \rightarrow(\forall \vec{z}) \beta$ is equivalent to $(\forall \vec{z})(\alpha \rightarrow \beta)$, we can move the universal quantifier and the quantifiers in $\neg \phi^{\prime}$ to the front, giving a T-equivalence between $\phi(x)$ and a Π_{n} formula ($\neg \phi^{\prime}$, being the negation of a Π_{n-1} formula, is Σ_{n-1}).

Exercise 3

An attempt at integer addition for $n, m \in \mathbb{N}$ is a function $A: \omega \times \omega \rightarrow \omega$ such that for all $n^{\prime} \leq n$ and $m^{\prime} \leq m, A\left(n^{\prime}, m^{\prime}\right)=n^{\prime}+m^{\prime}$.

Show that the property " A is an attempt at integer addition for n, m " can be expressed as a Δ_{0} formula. (You may use lemma 8.4 from [1].)

Solution to exercise $3(4 \mathrm{pt})$

The following formula works:

$$
\begin{aligned}
\operatorname{At}(n, m, A) & : A \text { is a function' } \\
& \wedge \operatorname{dom}(A)=\omega \times \omega \wedge \operatorname{ran}(A) \subseteq \omega \\
& \wedge A(0,0)=0 \\
& \wedge\left(\forall n^{\prime} \in n\right)\left(\forall m^{\prime} \in m\right)\left(A\left(n^{\prime}+1, m^{\prime}\right)=A\left(n^{\prime}, m^{\prime}\right)+1\right) \\
& \wedge\left(\forall n^{\prime} \in n\right)\left(\forall m^{\prime} \in m\right)\left(A\left(n^{\prime}, m^{\prime}+1\right)=A\left(n^{\prime}, m^{\prime}\right)+1\right) \\
& \wedge(0 \in n \wedge 0 \in m \rightarrow A(n, m)=A(n-1, m)+1) .
\end{aligned}
$$

We can express that A is a function by lemma 8.4. We can express $\operatorname{dom}(A)=\omega \times \omega$ by

$$
\begin{aligned}
& (\forall p \in A)\left(p_{1,0} \in \omega \wedge p_{1,1} \in \omega\right) \\
\wedge & (\exists p \in A)\left(p_{1}=(0,0)\right) \\
\wedge & (\forall p \in A)(\exists q \in A)\left(q_{1,0}=p_{1,0}+1\right) \\
\wedge & (\forall p \in A)(\exists q \in A)\left(q_{1,1}=p_{1,1}+1\right) ;
\end{aligned}
$$

a similar argument works for $\operatorname{ran}(A) \subseteq \omega . \quad A(x, y)=z$ can be expressed by $(\exists p \in A)\left(p_{0,0}=\right.$ $\left.x \wedge p_{0,1}=y \wedge p_{1}=z\right)$.

Depending on the desired use, $n \in \omega$ and $m \in \omega$ may be added as conditions. The question leaves ambiguous whether the intended reading is "give a formula such that, if n and m are natural numbers, expresses ..." or "give a formula that expresses that n and m are natural numbers and ..."-since the difference is trivial, both are fine.

References

[1] Keith J. Devlin, Constructibility, Springer-Verlag Berlin, ISBN 0-387-13258-9, 1984.

