Seminar Constructible Sets

Model solution session 3

2018-03-14

Exercise 1

In **ZF** we 'only' have the axiom of "set foundation", that is:

$$\forall x (x \neq \emptyset \to \exists y \in x (x \cap y = \emptyset)).$$

In **BS** we have the axiom of "full foundation", which may seem stronger. Prove that "full foundation" is a derivable in \mathbf{ZF} (hint: you will want to use the transitive closure of a set described in [1, page 12]).

Solution to exercise 1 (4pt)

Let A be a non-empty class, we will show that there is a set in A that is disjoint from A. Let x be (1pt) a set in A, if it happens to be the case that $x \cap A = \emptyset$, then we are done already.

If $x \cap A$ is non-empty, we consider $\operatorname{TC}(x)$, the transitive closure of x, and note that since (1pt) $x \subseteq \operatorname{TC}(x)$ we have that $\operatorname{TC}(x) \cap A \neq \emptyset$.

By separation, $TC(x) \cap A$ is a set, so using set foundation we find $y \in TC(x) \cap A$ such that (1pt) $y \cap TC(x) \cap A = \emptyset$.

We claim that this y is also disjoint from A. Suppose it is not, then there is $z \in y \cap A$. Since $z \in y \in TC(x)$ and TC(x) is transitive, we must have that $z \in TC(x)$. However, that means that $z \in y \cap TC(x) \cap A$, which contradicts the choice of y. Therefore y is disjoint from A, which (1pt) concludes our proof.

Exercise 2

Let T be a theory, $n \in \mathbb{N}$ and let $\phi(x)$ be a Σ_n formula such that

$$T \vdash \exists x(\phi(x)) T \vdash \phi(x) \leftrightarrow \forall y(\phi(y) \to x = y)$$

Show that $\phi(x)$ is Δ_n^T .

Solution to exercise 2 (2pt)

The second condition is actually sufficient. If n = 0 then the statement is trivial. Otherwise, since ϕ is a Σ_n formula, there is a Π_{n-1} formula $\phi'(x, \vec{y})$ such that $\phi(x)$ is of the form $(\exists \vec{z})\phi'(x, \vec{z})$. We can thus rewrite the second condition to be

$$T \vdash \phi(x) \leftrightarrow \forall y((\exists \vec{z})\phi'(y, \vec{z}) \to x = y).$$

By contraposition, this is equivalent to

$$T \vdash \phi(x) \leftrightarrow \forall y (x \neq y \rightarrow (\forall \vec{z}) \neg \phi'(x, \vec{z})).$$

Since for any α and β with \vec{z} not free in α , $\alpha \to (\forall \vec{z})\beta$ is equivalent to $(\forall \vec{z})(\alpha \to \beta)$, we can move the universal quantifier and the quantifiers in $\neg \phi'$ to the front, giving a *T*-equivalence between $\phi(x)$ and a Π_n formula ($\neg \phi'$, being the negation of a Π_{n-1} formula, is Σ_{n-1}).

Exercise 3

An attempt at integer addition for $n, m \in \mathbb{N}$ is a function $A : \omega \times \omega \to \omega$ such that for all $n' \leq n$ and $m' \leq m, A(n', m') = n' + m'$.

Show that the property "A is an attempt at integer addition for n, m" can be expressed as a Δ_0 formula. (You may use lemma 8.4 from [1].)

Solution to exercise 3 (4pt)

The following formula works:

$$\begin{aligned} \operatorname{At}(n,m,A) &: `A \text{ is a function'} \\ &\wedge \operatorname{dom}(A) = \omega \times \omega \wedge \operatorname{ran}(A) \subseteq \omega \\ &\wedge A(0,0) = 0 \\ &\wedge (\forall n' \in n)(\forall m' \in m)(A(n'+1,m') = A(n',m') + 1) \\ &\wedge (\forall n' \in n)(\forall m' \in m)(A(n',m'+1) = A(n',m') + 1) \\ &\wedge (0 \in n \land 0 \in m \to A(n,m) = A(n-1,m) + 1). \end{aligned}$$

We can express that A is a function by lemma 8.4. We can express dom $(A) = \omega \times \omega$ by

$$(\forall p \in A)(p_{1,0} \in \omega \land p_{1,1} \in \omega) \land (\exists p \in A)(p_1 = (0,0)) \land (\forall p \in A)(\exists q \in A)(q_{1,0} = p_{1,0} + 1) \land (\forall p \in A)(\exists q \in A)(q_{1,1} = p_{1,1} + 1);$$

a similar argument works for ran(A) $\subseteq \omega$. A(x,y) = z can be expressed by $(\exists p \in A)(p_{0,0} = x \land p_{0,1} = y \land p_1 = z)$.

Depending on the desired use, $n \in \omega$ and $m \in \omega$ may be added as conditions. The question leaves ambiguous whether the intended reading is "give a formula such that, if n and m are natural numbers, expresses ..." or "give a formula that expresses that n and m are natural numbers and ..."—since the difference is trivial, both are fine.

References

[1] Keith J. Devlin, Constructibility, Springer-Verlag Berlin, ISBN 0-387-13258-9, 1984.