Seminar on Constructible Sets

Exercises Session 4

14th March 2018

Exercises

Note: mentions to results and proofs refer back to those in Devlin.
Exercise 1. (4 points) Why is Corollary 10.4 immediate from Lemma 10.3? (Hint: notation!)
Answer: This is simply a matter of looking at the notation: we have that $f: M \rightarrow M$, which means that it is a total function, i.e. $\operatorname{dom}(f)=M$. This is Δ_{0}, thus also in particular Π_{n}. Then it follows from Lemma 10.3 that f is Δ_{n}^{M}

Exercise 2. (6 points) Explain how Lemma 10.6 is used in the proof of Lemma 10.7. Be precise: how does one "use the method of 10.6 "?

Answer: Since R is $\Sigma_{n}^{M}\left(\left\{p_{0}, \ldots, p_{m}\right\}\right)$, we have that $(\forall x \in M)\left(R(x) \leftrightarrow \vDash_{M} \varphi(\dot{x})\right)$ for some Σ_{n} formula $\varphi(v)$ of the M-language with constants among $\left\{p_{1}, \ldots, p_{m}\right\}$. The basic idea here is that, if $p=\left(p_{0}, \ldots, p_{m}\right)$, we can replace each occurrence of p_{i} in φ by $(p)_{i}$ without altering the complexity of the formula, thereby "contracting" all necessary information about the parameters inside of p and thus meaning that we can see R as being $\Sigma_{n}^{M}(\{p\})$.

More precisely: if we substitute each constant p_{i} in φ by a new variable v_{i}, then we can define a Σ_{n} formula $\psi\left(v, w_{0}, \ldots, w_{m}\right)$ satisfying that $(\forall x \in M)\left(\varphi(\underset{\sim}{x}) \leftrightarrow \psi\left(\dot{x}, p_{0}^{\circ}, \ldots, p_{m}^{\circ}\right)\right)$. Now, following the technique used in the proof of Lemma 10.6, we can define $\tilde{\psi}(v, w)$, where

$$
\tilde{\psi}(v, w) \leftrightarrow " w \text { is an }(m+1) \text {-tuple" } \wedge w_{0}=(w)_{0} \wedge \cdots \wedge w_{m}=(w)_{m} \wedge \psi\left(v, w_{0}, \ldots, w_{m}\right)
$$

which is still Σ_{n} by Lemma 8.4, and so we have that $(\forall x \in M)\left(R(x) \leftrightarrow \vDash_{M} \tilde{\psi}(\stackrel{\circ}{x}, \stackrel{\circ}{p})\right)$, showing that R is $\Sigma_{n}^{M}(\{p\})$.

Anton proposed an alternative 'method', different to that of Lemma 10.6: the idea is to note that given a relation $R(x, y)$ we can use twice the trick from Lemma 10.6 to obtain

$$
Q(x, y) \leftrightarrow\left[x \text { is an ordered pair } \wedge y \text { is an ordered pair } \wedge R\left((x)_{0},(y)_{1}\right)\right] .
$$

It is clear that $\exists x y Q(x, y)$ iff $\exists x Q(x, x)$, and that this construction can be extended to m-tuples. This gives another way to replace the parameters p_{i} in R by $(p)_{i}$, which is what we wanted to do.

