Solutions to Exercise sheet 5

Olle Torstensson & Tristan van der Vlugt

Prove that the Axiom of Cartesian Product holds in the inner model L

 $\mathsf{ZF} \vdash (\forall x \forall y \exists z \forall u [u \in z \leftrightarrow (\exists a \in x) (\exists b \in y) (u = \langle a, b \rangle)])^L$

without assuming II.1.2. However, you may assume that

 $\mathsf{ZF} \vdash \forall x \forall y \exists z \forall u [u \in z \leftrightarrow (\exists a \in x) (\exists b \in y) (u = \langle a, b \rangle)].$

Proof. Assume ZF. Let $x, y \in L$. We want to show that there is a $z \in L$ such that for all $u \in L$,

 $u \in z \leftrightarrow (\exists a \in x) (\exists b \in y) (u = \langle a, b \rangle)$

|1|

 $\mathbf{2}$

Let α be such that $x, y \in L_{\alpha}$. By assumption, cartesian products exist, so put $z = x \times y = \{u \mid (\exists a \in x) (\exists b \in y) (u = \langle a, b \rangle)\}$. By transitivity of L_{α} , we have that $x \subseteq L_{\alpha}$ and $y \subseteq L_{\alpha}$. Furthermore, for any $a, b \in L_{\alpha}$,

$$\begin{aligned} \{a\} &= \{ u \in L_{\alpha} \mid \models_{L_{\alpha}} u = \mathring{a} \} \in L_{\alpha+1}; \\ \{a, b\} &= \{ u \in L_{\alpha} \mid \models_{L_{\alpha}} u = \mathring{a} \lor u = \mathring{b} \} \in L_{\alpha+1}; \\ \langle a, b \rangle &= \{ \{a\}, \{a, b\} \} = \{ u \in L_{\alpha+1} \mid \models_{L_{\alpha+1}} u = \{\mathring{a}\} \lor u = \{\mathring{a}, b\} \} \in L_{\alpha+2}. \end{aligned}$$

Thus $x \times y \subseteq L_{\alpha+2}$ and then we have that

$$x \times y = \{ u \in L_{\alpha+2} \mid \models_{L_{\alpha+2}} (\exists a \in \mathring{x}) (\exists b \in \mathring{y}) (u = \langle a, b \rangle) \} \in L_{\alpha+3} \subseteq L.$$

So $x \times y \in L$ and we have proven that:

$$\mathsf{ZF} \vdash [\forall x \forall y \exists z \forall u (u \in z \leftrightarrow (\exists a \in x) (\exists b \in y) (u = \langle a, b \rangle))]^L.$$

Let Add(s, a, b) be the LST formula that states "s = a + b" \wedge "a, b, s are natural numbers".

a) Prove that Add(s, a, b) is Δ_1^{KP} . (*)

Proof. The first step is to find a Σ_1 formula that describes Add(s, a, b). Surprisingly every submission of this homework had a different approach to this. Personally I would use the formula $\exists \Phi(s, a, b)$ with

$$\Phi(s, a, b) := "f \text{ is a function"} \land "a, b, s \text{ are natural numbers"} \land \operatorname{dom}(f) = \langle a + 1, b + 1 \rangle \land f(x, 0) = x \land f(x, y + 1) = f(x, y) + 1 \land f(a, b) = s$$

All the terms inside the brackets are Σ_0 . A more compact function would be the unary f such that dom(f) = b + 1, f(0) = a, f(x + 1) = f(x) + 1 and f(b) = s. Clearly in KP we have

 $\mathsf{KP} \vdash \mathrm{Add}(s, a, b) \leftrightarrow \Phi(s, a, b)$

and furthermore that f is unique for every triple s, a, b of natural numbers. By a previous homework exercise we can conclude that then there is a Π_1^{KP} formulation of Add

b) Prove that the class defined by Add is uniformly $\Delta_1^{L_{\alpha}}$ for $\alpha > \omega$ limit. (**)

Proof. We will prove that Add is uniformly $\Sigma_1^{L_{\alpha}}$ for $\alpha > \omega$ limit. That Add is $\Pi_1^{L_{\alpha}}$ as well follows from the uniqueness of s for each a, b and the fact that s is in L_{α} (it is a natural number). Let add be the \mathscr{L} equivalent of Add. We wish to show that

$$\operatorname{Add}(s, a, b) \Leftrightarrow \vDash_{L_{\alpha}} \operatorname{add}(\mathring{s}, \mathring{a}, b)$$

As we saw in the lecture, if we want to show that Add is $\Sigma_1^{L_{\alpha}}$, the only case that is specific to Add is that $\exists f \Phi(f, s, a, b) \Rightarrow \vDash_{L_{\alpha}} \exists f \varphi(f, \mathring{s}, \mathring{a}, \mathring{b})$, where φ is the \mathscr{L} equivalent of Φ . Therefore assume that $\exists f \Phi(f, s, a, b)$ for natural numbers s, a, b.

We know that $\omega \in L_{\omega}$, and therefore that $a, b, s \in L_{\omega}$. So for any two natural numbers n, m, we see that $\{n\}, \{n, m\} \in L_{\omega+1}$ and thus $\langle n, m \rangle \in L_{\omega+2}$. Each element of f is of the form $\langle n, \langle n, m \rangle \rangle$, and thus all elements in f are elements in $L_{\omega+4}$. This shows $f \in L_{\omega+5} \subseteq L_{\alpha}$. So if f is such that $\Phi(f, s, a, b)$, by uniqueness of f we see that $\models_{L_{\alpha}} \varphi(\mathring{f}, \mathring{s}, \mathring{a}, \mathring{b})$, which proves our claim.