Seminar on Constructible Sets

Exercises Session 7

4th April 2018

Exercises

Exercise 1 (a). Let X be a subset of an interval $I \subset \mathbb{R}$, such that for every $q \in I \cap \mathbb{Q}$ and every $k \in \mathbb{N}$, there is an $x(q, k) \in X \cap\left(q-2^{-k}, q+2^{-k}\right)$. Show that there is a countable subset of X that is dense in I.

Answer: The subset $X^{\prime}=\{x(q, k) \mid q \in \mathbb{Q}, k \in \mathbb{N}\}$ is countable, being an image of $\mathbb{Q} \times \mathbb{N}$. It is also dense: let $a, b \in I$ with $a<b$ and let $k=\lceil-\log (b-a) / \log (2)\rceil+1$ if $b-a<1$ and 1 otherwise. Let $q=\frac{a+b}{2}$. Clearly, $a \leq q-2^{-k}<q+2^{-k} \leq b$ hence $a<x(q, k) b<$, as desired.
Exercise 1 (b). Show that if X is a dense subset of an interval $I \subset \mathbb{R}$, then it is contains a countable subset dense in I.

Answer: Since I is an interval, for every $q \in I$ and $k \in \mathbb{N}$, the set $I \cap\left(q-2^{-k}, q+2^{-k}\right)$ is a non-empty interval and thus contains some element $x(q, k) \in X$. The result then follows by Exercise 1(a).
Exercise 2. Prove that the set $\left\langle X,<_{X}\right\rangle$ defined in the proof of the left-to-right implication of Theorem 1.4 of Devlin is a densely ordered set of cardinality 2^{ω}.

Answer: Given any two maximal branches $b, d \in X$, there is α such that $b(\alpha) \neq d(\alpha)$ and $b(\beta)=d(\beta)$ for all $\beta<\alpha$. Since T_{α} is linearly ordered, we have that either $b(\alpha)<_{\alpha} d(\alpha)$, and so $b<_{X} d$, or $d(\alpha)<_{\alpha} b(\alpha)$ and then $d<_{X} b$. Hence X is linearly ordered. Now, consider the successors of $b(\alpha)$ in $T_{\alpha+1}$, which are order-isomorphic to the rationals. Then we can find some $c(\alpha+1) \in T_{\alpha+1}$ satisfying $b(\alpha+1)<_{\alpha+1} c(\alpha+1)$. We can now consider a maximal branch c such that $b(\beta)=c(\beta)$ for all $\beta \leqslant \alpha$ and $c(\alpha+1)$ is the element of $T_{\alpha+1}$ we just picked, and this branch satisfies that $b<_{X} c<_{X} d$, so X is densely ordered.

For the cardinality, note that X has at least 2^{ω} elements, since we can easily find 2^{ω} different ω branches by starting at 0 and picking a different successor at each level up to ω, and then each of these branches can be extended to a maximal branch. So this gives $2^{\omega} \leqslant|X|$. On the other hand, we are working with a Souslin tree, so every maximal branch is countable. Given any level of a maximal branch, there are ω possible sucessors to pick from in the next level. Hence, for any $\alpha<\omega_{1}$, we have at most $\omega^{\omega}=2^{\omega}$ different branches with order type α. Hence there are at most $\sum_{\alpha<\omega_{1}} 2^{\omega}=\omega_{1} \cdot 2^{\omega}=2^{\omega}$ maximal branches, which gives $|X| \leqslant 2^{\omega}$.

