Solutions for the Homework of the 18th of April
 Bart Keller \& Tristan van der Vlugt

1 In the proof of theorem 1.5 of Devlin, we constructed an isomorphism π. Prove the following properties:

1) $\pi\left(\omega_{1}\right)=\alpha$,
2) $\pi(\mathbf{T})=\mathbf{T} \upharpoonright \alpha$,
3) $\pi(A)=A \cap(T \upharpoonright \alpha)$.

Proof. If for some $X \in M$ we have that $X \cap M \subseteq L_{\alpha}$, then $\pi(X)=X \cap M$. We can see this as follows. For $x \in X \cap M$, we know that $\pi^{-1}(x)=x$, since we know that $\pi \upharpoonright L_{\alpha}=\operatorname{id}_{L_{\alpha}}$, so $x \in \pi(X)$. This gives that $X \cap M \subseteq \pi(X)$. For $x \in \pi(X)$, we immediately have that $x=\pi^{-1}(x) \in X \cap M$, so this gives us that $\pi(X) \subseteq X \cap M$. We may conclude that $\pi(X)=X \cap M$.
We can now prove the three asked properties of π :
We can use the claim for $X=\omega_{1}$, since $\omega_{1} \cap M=\mathrm{On} \cap L_{\omega_{1}} \cap M=\mathrm{On} \cap L_{\alpha}=$ α. We know that $\alpha \subseteq L_{\alpha}$, so we may use the claim to conclude that $\pi\left(\omega_{1}\right)=\omega_{1} \cap M=\alpha$
We can also use the claim for $X=T$. We have been given in the prove of Theorem 1.5 in [1] that $T \cap M=T \upharpoonright \alpha$. Since we can easily see that $T \upharpoonright \alpha \subseteq L_{\omega_{1}}$, since element of $T \upharpoonright \alpha$ is an α-sequence of 0 s and 1 s , and we can see that $T \upharpoonright \alpha \subseteq M$, we have that $T \upharpoonright \alpha \subseteq M \cap L_{\omega_{1}}=L_{\alpha}$. So we may use the claim to conclude that $\pi(T)=T \cap M=T \upharpoonright \alpha$. Since we also have that the structure of \mathbf{T} is preserved under the bijection π, we also have that $\pi(\mathbf{T})=\mathbf{T} \upharpoonright \alpha$.
Finally, we may use the claim for $X=A$. By the previous, we have that $A \subseteq L_{\alpha}$, since $A \subseteq T$. Since in the proof of Theorem 1.5 of [1] it is also given that $A \cap M=A \cap(T \upharpoonright \alpha)$, we may use the claim to conclude that $\pi(A)=A \cap M=A \cap(T \upharpoonright \alpha)$.
Another version of the proof uses that the bijection π distributes over unions, i.e. $\pi(A \cup B)=\pi(A) \cup \pi(B)$. Using this, one can also prove the above properties.

2 Show that, at the bottom of page 116 in the proof of theorem 1.5 of Devlin, the sets A_{α} and b_{x}, as defined in the definition of T_{α}, exist for every $\alpha<\omega_{1}$ and $x \in T \upharpoonright \alpha$

Proof. For the existence of A_{α}, we work with contradiction. Suppose that no such maximal antichain as A_{α} exists. Then we have that every maximal antichain is contained in $T \upharpoonright \beta+1$ for some $\beta<\alpha$, where β is chosen minimally. This is however impossible, since we can easily construct a maximal antichain in $T \upharpoonright \beta+2$ by replacing one of the elements at level T_{β} in our
maximal antichain with one of its successors at level $T_{\beta+1}$, which would still be a maximal antichain. This is a contradiction with the minimality of β, so we must have that such a β cannot exist. So therefore A_{α} must exist. For the existence of b_{x}, we also work with contradiction. So assume that no such branch exists. So then we have that every α-branch containing x is disjoint form A_{α}. Then we have that x is incomparable to any element of A_{α}, and this is a contradiction with the fact that A_{α} is a maximal antichain. So we must have that a branch like b_{x} exists.
$3 \quad$ Let $\mathbb{S}=\langle S, \leq\rangle$ be a Souslin tree. Define the product $\mathbb{S} \times \mathbb{S}$ as the poset $\langle X, \preceq\rangle$, where $X=\{(s, t) \mid s, t \in S \wedge \mathrm{ht}(s)=\mathrm{ht}(t)\}$ and $(a, b) \preceq\left(a^{\prime}, b^{\prime}\right)$ if and only if $a \leq a^{\prime}$ and $b \leq b^{\prime}$. Show that $\mathbb{S} \times \mathbb{S}$ is not

a Souslin tree.

Proof. Every level S_{α} is nonempty, so by the axiom of choice let $\left\langle x_{\alpha}\right\rangle_{\alpha<\omega_{1}}$ be a sequence such that $x_{\alpha} \in S_{\alpha}$ for every $\alpha<\omega_{1}$. Souslin trees are normal, so there are $x_{1}^{\alpha}, x_{2}^{\alpha} \in S_{\alpha+1}$, with $x_{1}^{\alpha} \neq x_{2}^{\alpha}$ and $x_{\alpha}<x_{i}^{\alpha}$ for both i. Clearly $\operatorname{ht}\left(x_{1}^{\alpha}\right)=\operatorname{ht}\left(x_{2}^{\alpha}\right)$, and therefore $\left(x_{1}^{\alpha}, x_{2}^{\alpha}\right) \in \mathbb{S} \times \mathbb{S}$. For each $\alpha<\omega_{1}$ fix two of these direct successors of x_{α} to get a sequence $\left\langle\left(x_{1}^{\alpha}, x_{2}^{\alpha}\right)\right\rangle_{\alpha<\omega_{1}}$. This sequence has cardinality ω_{1} and is an antichain:
Suppose $\left(x_{1}^{\alpha}, x_{2}^{\alpha}\right) \preceq\left(x_{1}^{\beta}, x_{2}^{\beta}\right)$. Assume without loss of generality that $\alpha<\beta$ (equality of α and β implies $\left(x_{1}^{\alpha}, x_{2}^{\alpha}\right)=\left(x_{1}^{\beta}, x_{2}^{\beta}\right)$ and is therefore not of interest). Then $x_{i}^{\alpha} \leq x_{i}^{\beta}$, and since $\operatorname{ht}\left(x_{i}^{\alpha}\right)<\operatorname{ht}\left(x_{i}^{\beta}\right)$ we even have $x_{i}^{\alpha}<x_{i}^{\beta}$. \mathbb{S} is a tree, so for both i the set $B_{i}=\left\{y \in S \mid y<x_{i}^{\beta}\right\}$ is a well-order, with x_{β} as maximal element. But $x_{i}^{\alpha} \in B_{i}$, and thus $x_{i}^{\alpha} \leq x_{\beta}$, and this shows that the branch $\left\{y \in S \mid y<x_{\beta}\right\}$ of \mathbb{S} is not a well-order, as it contains two incomparable elements. This is a contradiction, therefore all elements in $\left\langle\left(x_{1}^{\alpha}, x_{2}^{\alpha}\right)\right\rangle_{\alpha<\omega_{1}}$ are mutually incomparable.

References

[1] Keith J. Devlin, Constructibility, Springer-Verlag Berlin, ISBN 0-387-13258-9, 1984.

