Solutions for the Homework of the 18th of April Bart Keller & Tristan van der Vlugt

In the proof of theorem 1.5 of Devlin, we constructed an isomorphism π . Prove the following properties:

1) $\pi(\omega_1) = \alpha$,

1

 $\mathbf{2}$

- 2) $\pi(\mathbf{T}) = \mathbf{T} \upharpoonright \alpha$,
- 3) $\pi(A) = A \cap (T \upharpoonright \alpha).$

Proof. If for some $X \in M$ we have that $X \cap M \subseteq L_{\alpha}$, then $\pi(X) = X \cap M$. We can see this as follows. For $x \in X \cap M$, we know that $\pi^{-1}(x) = x$, since we know that $\pi \upharpoonright L_{\alpha} = \operatorname{id}_{L_{\alpha}}$, so $x \in \pi(X)$. This gives that $X \cap M \subseteq \pi(X)$. For $x \in \pi(X)$, we immediately have that $x = \pi^{-1}(x) \in X \cap M$, so this gives us that $\pi(X) \subseteq X \cap M$. We may conclude that $\pi(X) = X \cap M$.

We can now prove the three asked properties of π :

We can use the claim for $X = \omega_1$, since $\omega_1 \cap M = \operatorname{On} \cap L_{\omega_1} \cap M = \operatorname{On} \cap L_{\alpha} = \alpha$. We know that $\alpha \subseteq L_{\alpha}$, so we may use the claim to conclude that $\pi(\omega_1) = \omega_1 \cap M = \alpha$

We can also use the claim for X = T. We have been given in the prove of Theorem 1.5 in [1] that $T \cap M = T \upharpoonright \alpha$. Since we can easily see that $T \upharpoonright \alpha \subseteq L_{\omega_1}$, since element of $T \upharpoonright \alpha$ is an α -sequence of 0s and 1s, and we can see that $T \upharpoonright \alpha \subseteq M$, we have that $T \upharpoonright \alpha \subseteq M \cap L_{\omega_1} = L_{\alpha}$. So we may use the claim to conclude that $\pi(T) = T \cap M = T \upharpoonright \alpha$. Since we also have that the structure of **T** is preserved under the bijection π , we also have that $\pi(\mathbf{T}) = \mathbf{T} \upharpoonright \alpha$.

Finally, we may use the claim for X = A. By the previous, we have that $A \subseteq L_{\alpha}$, since $A \subseteq T$. Since in the proof of Theorem 1.5 of [1] it is also given that $A \cap M = A \cap (T \upharpoonright \alpha)$, we may use the claim to conclude that $\pi(A) = A \cap M = A \cap (T \upharpoonright \alpha)$.

Another version of the proof uses that the bijection π distributes over unions, i.e. $\pi(A \cup B) = \pi(A) \cup \pi(B)$. Using this, one can also prove the above properties.

Show that, at the bottom of page 116 in the proof of theorem 1.5 of Devlin, the sets A_{α} and b_x , as defined in the definition of T_{α} , exist for every $\alpha < \omega_1$ and $x \in T \upharpoonright \alpha$

Proof. For the existence of A_{α} , we work with contradiction. Suppose that no such maximal antichain as A_{α} exists. Then we have that every maximal antichain is contained in $T \upharpoonright \beta + 1$ for some $\beta < \alpha$, where β is chosen minimally. This is however impossible, since we can easily construct a maximal antichain in $T \upharpoonright \beta + 2$ by replacing one of the elements at level T_{β} in our maximal antichain with one of its successors at level $T_{\beta+1}$, which would still be a maximal antichain. This is a contradiction with the minimality of β , so we must have that such a β cannot exist. So therefore A_{α} must exist. For the existence of b_x , we also work with contradiction. So assume that no such branch exists. So then we have that every α -branch containing x is

disjoint form A_{α} . Then we have that x is incomparable to any element of A_{α} , and this is a contradiction with the fact that A_{α} is a maximal antichain. So we must have that a branch like b_x exists.

Let $\mathbb{S} = \langle S, \leq \rangle$ be a Souslin tree. Define the product $\mathbb{S} \times \mathbb{S}$ as the poset $\langle X, \preceq \rangle$, where $X = \{(s,t) \mid s,t \in S \land ht(s) = ht(t)\}$ and $(a,b) \preceq (a',b')$ if and only if $a \leq a'$ and $b \leq b'$. Show that $\mathbb{S} \times \mathbb{S}$ is not a Souslin tree.

Proof. Every level S_{α} is nonempty, so by the axiom of choice let $\langle x_{\alpha} \rangle_{\alpha < \omega_1}$ be a sequence such that $x_{\alpha} \in S_{\alpha}$ for every $\alpha < \omega_1$. Souslin trees are normal, so there are $x_1^{\alpha}, x_2^{\alpha} \in S_{\alpha+1}$, with $x_1^{\alpha} \neq x_2^{\alpha}$ and $x_{\alpha} < x_i^{\alpha}$ for both *i*. Clearly $\operatorname{ht}(x_1^{\alpha}) = \operatorname{ht}(x_2^{\alpha})$, and therefore $(x_1^{\alpha}, x_2^{\alpha}) \in \mathbb{S} \times \mathbb{S}$. For each $\alpha < \omega_1$ fix two of these direct successors of x_{α} to get a sequence $\langle (x_1^{\alpha}, x_2^{\alpha}) \rangle_{\alpha < \omega_1}$. This sequence has cardinality ω_1 and is an antichain:

Suppose $(x_1^{\alpha}, x_2^{\alpha}) \preceq (x_1^{\beta}, x_2^{\beta})$. Assume without loss of generality that $\alpha < \beta$ (equality of α and β implies $(x_1^{\alpha}, x_2^{\alpha}) = (x_1^{\beta}, x_2^{\beta})$ and is therefore not of interest). Then $x_i^{\alpha} \le x_i^{\beta}$, and since $\operatorname{ht}(x_i^{\alpha}) < \operatorname{ht}(x_i^{\beta})$ we even have $x_i^{\alpha} < x_i^{\beta}$. \mathbb{S} is a tree, so for both *i* the set $B_i = \{y \in S \mid y < x_i^{\beta}\}$ is a well-order, with x_{β} as maximal element. But $x_i^{\alpha} \in B_i$, and thus $x_i^{\alpha} \le x_{\beta}$, and this shows that the branch $\{y \in S \mid y < x_{\beta}\}$ of \mathbb{S} is not a well-order, as it contains two incomparable elements. This is a contradiction, therefore all elements in $\langle (x_1^{\alpha}, x_2^{\alpha}) \rangle_{\alpha < \omega_1}$ are mutually incomparable. \Box

References

 Keith J. Devlin, Constructibility, Springer-Verlag Berlin, ISBN 0-387-13258-9, 1984.

3