Seminar on Set Theory

Hand-out lecture 13 December 18, 2015

Definition 1 A complete Boolean algebra B is called countably Completely Generated (ccg) if there is some countable $X \subseteq B$ such that B is the least complete subalgebra of B containing X.

Theorem 2 Suppose λ is an infinite cardinal. Then $B = RO(\lambda^{\omega})$ is ccg and $|B| \ge \lambda$.

Definition 3 Suppose A and B are Boolean algebras. A can be completely embedded in B if there exists a complete injective homomorphism from A to B.

Theorem 4 Let A be a Boolean algebra of infinite cardinality κ . Then A can be completely embedded in the collapsing $(\aleph_0, 2^{\kappa})$ -algebra.

Theorem 5 (Rasiowa-Sikorski) If S is a countable family of subsets of a Boolean algebra B and every member of S has a join, then for each $a \neq 0_B$ in B there is an S-complete ultrafilter in B containing a.