
Basic Category Theory

Jaap van Oosten



Jaap van Oosten
Department of Mathematics

Utrecht University
The Netherlands

Revised, July 2002



1 Categories and Functors

1.1 Definitions and examples

A category C is given by a collection C0 of objects and a collection C1 of arrows
which have the following structure.

• Each arrow has a domain and a codomain which are objects; one writes

f : X → Y or X
f
→ Y if X is the domain of the arrow f , and Y its

codomain. One also writes X = dom(f) and Y = cod(f);

• Given two arrows f and g such that cod(f) = dom(g), the composition
of f and g, written gf , is defined and has domain dom(f) and codomain
cod(g):

(X
f
→ Y

g
→ Z) 7→ (X

gf
→ Z)

• Composition is associative, that is: given f : X → Y , g : Y → Z and
h : Z →W , h(gf) = (hg)f ;

• For every object X there is an identity arrow idX : X → X , satisfying
idXg = g for every g : Y → X and f idX = f for every f : X → Y .

Exercise 1 Show that idX is the unique arrow with domain X and codomain
X with this property.

Instead of “arrow” we also use the terms “morphism” or “map”.

Examples

a) 1 is the category with one object ∗ and one arrow, id∗;

b) 0 is the empty category. It has no objects and no arrows.

c) A preorder is a set X together with a binary relation ≤ which is reflexive
(i.e. x ≤ x for all x ∈ X) and transitive (i.e. x ≤ y and y ≤ z imply x ≤ z
for all x, y, z ∈ X). This can be viewed as a category, with set of objects
X and for every pair of objects (x, y) such that x ≤ y, exactly one arrow:
x→ y.

Exercise 2 Prove this. Prove also the converse: if C is a category such that C0
is a set, and such that for any two objects X,Y of C there is at most one arrow:
X → Y , then C0 is a preordered set.

d) A monoid is a set X together with a binary operation, written like mul-
tiplication: xy for x, y ∈ X , which is associative and has a unit element
e ∈ X , satisfying ex = xe = x for all x ∈ X . Such a monoid is a category
with one object, and an arrow x for every x ∈ X .

e) Set is the category which has the class of all sets as objects, and functions
between sets as arrows.

1



Most basic categories have as objects certain mathematical structures, and the
structure-preserving functions as morphisms. Examples:

f) Top is the category of topological spaces and continuous functions.

g) Grp is the category of groups and group homomorphisms.

h) Rng is the category of rings and ring homomorphisms.

i) Grph is the category of graphs and graph homomorphisms.

j) Pos is the category of partially ordered sets and monotone functions.

Given two categories C and D, a functor F : C → D consists of operations
F0 : C0 → D0 and F1 : C1 → D1, such that for each f : X → Y , F1(f) :
F0(X)→ F0(Y ) and:

• for X
f
→ Y

g
→ Z, F1(gf) = F1(g)F1(f);

• F1(idX ) = idF0(X) for each X ∈ C0.

But usually we write just F instead of F0, F1.

Examples.

a) There is a functor U : Top → Set which assigns to any topological space
X its underlying set. We call this functor “forgetful”: it “forgets” the
mathematical structure. Similarly, there are forgetful functors Grp→ Set,
Grph→ Set, Rng→ Set, Pos→ Set etcetera;

b) For every category C there is a unique functor C → 1 and a unique one
0→ C;

c) Given two categories C and D we can define the product category C × D
which has as objects pairs (C,D) ∈ C0 × D0, and as arrows:(C,D) →
(C ′, D′) pairs (f, g) with f : C → C ′ in C, and g : D → D′ in D. There
are functors π0 : C × D → C and π1 : C × D → D;

d) Given two functors F : C → D and G : D → E one can define the
composition GF : C → E . This composition is of course associative and
since we have, for any category C, the identity functor C → C, we have a
category Cat which has categories as objects and functors as morphisms.

e) Given a set A, consider the set Ã of strings a1 . . . an on the alphabet
A ∪ A−1 (A−1 consists of elements a−1 for each element a of A; the sets
A and A−1 are disjoint and in 1-1 correspondence with each other), such
that for no x ∈ A, xx−1 or x−1x is a substring of a1 . . . an. Given two
such strings ~a = a1 . . . an,~b = b1 . . . bm, let ~a ?~b the string formed by first
taking a1 . . . anb1 . . . bm and then removing from this string, successively,
substrings of form xx−1 or x−1x, until one has an element of Ã.

This defines a group structure on Ã. Ã is called the free group on the set
A.

2



Exercise 3 Prove this, and prove that the assignment A 7→ Ã is part of a
functor: Set→ Grp. This functor is called the free functor.

f) Every directed graph can be made into a category as follows: the objects
are the vertices of the graph and the arrows are paths in the graph. This
defines a functor from the category Dgrph of directed graphs to Cat. The
image of a directed graph D under this functor is called the category
generated by the graph D.

g) Quotient categories. Given a category C, a congruence relation on C
specifies, for each pair of objects X,Y , an equivalence relation ∼X,Y on
the class of arrows C(X,Y ) which have domain X and codomain Y , such
that

• for f, g : X → Y and h : Y → Z, if f ∼X,Y g then hf ∼X,Z hg;

• for f : X → Y and g, h : Y → Z, if g ∼Y,Z h then gf ∼X,Z hf .

Given such a congruence relation ∼ on C, one can form the quotient cat-
egory C/∼ which has the same objects as C, and arrows X → Y are
∼X,Y -equivalence classes of arrows X → Y in C.

Exercise 4 Show this and show that there is a functor C → C/∼, which takes
each arrow of C to its equivalence class.

h) An example of this is the following (“homotopy”). Given a topological
space X and points x, y ∈ X , a path from x to y is a continuous mapping
f from some closed interval [0, a] to X with f(0) = x and f(a) = y. If
f : [0, a]→ X is a path from x to y and g : [0, b]→ X is a path from y to z

there is a path gf : [0, a+b]→ X (defined by gf(t) =

{

f(t) t ≤ a
g(t− a) else

)

from x to z. This makes X into a category, the path category of X ,
and of course this also defines a functor Top → Cat. Now given paths
f : [0, a]→ X , g : [0, b]→ X , both from x to y, one can define f ∼x,y g if
there is a continuous map F : A→ X where A is the area:

(0, 1) (b, 1)

FFFFFFFF

(0, 0) (a, 0)

in R2, such that

F (t, 0) = f(t)
F (t, 1) = g(t)
F (0, s) = x s ∈ [0, 1]
F (s, t) = y (s, t) on the segment (b, 1)− (a, 0)

One can easily show that this is a congruence relation. The quotient of the
path category by this congruence relation is a category called the category
of homotopy classes of paths in X .

3



i) let C be a category such that for every pair (X,Y ) of objects the class
C(X,Y ) of arrows from X to Y is a set (such C is called locally small).

For any object C of C then, there is a functor hC : C → Set which assigns
to any object C ′ the set C(C,C ′). Any arrow f : C ′ → C ′′ gives by
composition a function C(C,C ′) → C(C,C ′′), so we have a functor. A
functor of this form is called a representable functor.

j) Let C be a category and C an object of C. The slice category C/C has as
objects all arrows g which have codomain C. An arrow from g : D → C
to h : E → C in C/C is an arrow k : D → E in C such that hk = g. Draw
like:

D
k //

g
  

@@
@@

@@
@ E

h
��~~

~~
~~

~

C

We say that this diagram commutes if we mean that hk = g.

Exercise 5 Convince yourself that the assignment C 7→ C/C gives rise to a
functor C → Cat.

k) Recall that for every group (G, ·) we can form a group (G, ?) by putting
f ? g = g · f .

For categories the same construction is available: given C we can form
a category Cop which has the same objects and arrows as C, but with
reversed direction; so if f : X → Y in C then f : Y → X in Cop. To
make it notationally clear, write f̄ for the arrow Y → X corresponding to
f : X → Y in C. Composition in Cop is defined by:

f̄ ḡ = gf

Often one reads the term “contravariant functor” in the literature. What I
call functor, is then called “covariant functor”. A contravariant functor F
from C to D inverts the direction of the arrows, so F1(f) : F0(cod(f)) →
F0(dom(f)) for arrows f in C. In other words, a contravariant functor
from C to D is a functor from Cop → D (equivalently, from C to Dop).

Of course, any functor F : C → D gives a functor F op : Cop → Dop. In
fact, we have a functor (−)op : Cat→ Cat.

Exercise 6 Let C be locally small. Show that there is a functor (the “Hom
functor”) C(−,−) : Cop × C → Set, assigning to the pair (A,B) of objects of C,
the set C(A,B).

l) Given a partially ordered set (X,≤) we make a topological space by defin-
ing U ⊆ X to be open iff for all x, y ∈ X , x ≤ y and x ∈ U imply y ∈ U
(U is “upwards closed”, or an “upper set”). This is a topology, called the
Alexandroff topology w.r.t. the order ≤.

4



If (X,≤) and (Y,≤) are two partially ordered sets, a function f : X →
Y is monotone for the orderings if and only if f is continuous for the
Alexandroff topologies. This gives an important functor: Pos→ Top.

Exercise 7 Show that the construction of the quotient category in example g)
generalizes that of a quotient group by a normal subgroup. That is, regard a
group G as a category with one object; show that there is a bijection between
congruence relations on G and normal subgroups of G, and that for a normal
subgroup N of G, the quotient category by the congruence relation correspond-
ing to N , is to the quotient group G/N .

m) “Abelianization”. Let Abgp be the category of abelian groups and ho-
momorphisms. For every group G the subgroup [G,G] generated by all
elements of form aba−1b−1 is a normal subgroup. G/[G,G] is abelian, and
for every group homomorphism φ : G → H with H abelian, there is a
unique homomorphism φ̄ : G/[G,G]→ H such that the diagram

G
p

{{vvvvvvvvv
φ

��
??

??
??

??

G/[G,G]
φ̄

// H

commutes. Show that this gives a functor: Grp→ Abgp.

n) “Specialization ordering”. Given a topological space X , you can define a
preorder ≤s on X as follows: say x ≤s y if for all open sets U , if x ∈ U
then y ∈ U . ≤s is a partial order iff X is a T0-space.

For many spaces, ≤s is trivial (in particular when X is T1) but in case X
is for example the Alexandroff topology on a poset (X,≤) as in l), then
x ≤s y iff x ≤ y.

Exercise 8 If f : X → Y is a continuous map of topological spaces then f is
monotone w.r.t. the specialization orderings ≤s. This defines a functor Top →
Preord, where Preord is the category of preorders and monotone functions.

Exercise 9 Let X be the category defined as follows: objects are pairs (I, x)
where I is an open interval in R and x ∈ I . Morphisms (I, x) → (J, y) are
differentiable functions f : I → J such that f(x) = y.

Let Y be the (multiplicative) monoid R, considered as a category. Show that
the operation which sends an arrow f : (I, x) → (J, y) to f ′(x), determines a
functor X → Y . On which basic fact of elementary Calculus does this rely?

1.2 Some special objects and arrows

We call an arrow f : A→ B mono (or a monomorphism, or monomorphic) in a
category C, if for any other object C and for any pair of arrows g, h : C → A,
fg = fh implies g = h.

5



In Set, f is mono iff f is an injective function. The same is true for Grp,
Grph, Rng, Preord, Pos,. . .

We call an arrow f : A → B epi (epimorphism, epimorphic) if for any pair
g, h : B → C, gf = hf implies g = h.

The definition of epi is “dual” to the definition of mono. That is, f is epi in
the category C if and only if f is mono in Cop, and vice versa. In general, given
a property P of an object, arrow, diagram,. . . we can associate with P the dual
property P op: the object or arrow has property P op in C iff it has P in Cop.

The duality principle, a very important, albeit trivial, principle in category
theory, says that any valid statement about categories, involving the proper-
ties P1, . . . , Pn implies the “dualized” statement (where direction of arrows is
reversed) with the Pi replaced by P op

i .

Example. If gf is mono, then f is mono. From this, “by duality”, if fg is epi,
then f is epi.

Exercise 10 Prove these statements.

In Set, f is epi iff f is a surjective function. This holds (less trivially!) also for
Grp, but not for Mon, the category of monoids and monoid homomorphisms:

Example. In Mon, the embedding N→ Z is an epimorphism.

For, suppose Z
f

//

g
// (M, e, ?) two monoid homomorphisms which agree on

the nonnegative integers. Then

f(−1) = f(−1) ? g(1) ? g(−1) = f(−1) ? f(1) ? g(−1) = g(−1)

so f and g agree on the whole of Z.

We say a functor F preserves a property P if whenever an object or arrow
(or. . . ) has P , its F -image does so.

Now a functor does not in general preserve monos or epis: the example of
Mon shows that the forgetful functor Mon→ Set does not preserve epis.

An epi f : A → B is called split if there is g : B → A such that fg = idB
(other names: in this case g is called a section of f , and f a retraction of g).

Exercise 11 By duality, define what a split mono is. Prove that every functor
preserves split epis and monos.

A morphism f : A → B is an isomorphism if there is g : B → A such that
fg = idB and gf = idA. We call g the inverse of f (and vice versa, of course);
it is unique if it exists. We also write g = f−1.

Every functor preserves isomorphisms.

Exercise 12 In Set, every arrow which is both epi and mono is an isomorphism.
Not so in Mon, as we have seen. Here’s another one: let CRng1 be the category
of commutative rings with 1, and ring homomorphisms (preserving 1) as arrows.
Show that the embedding Z→ Q is epi in CRng1.

6



Exercise 13 i) If two of f , g and fg are iso, then so is the third;

ii) if f is epi and split mono, it is iso;

iii) if f is split epi and mono, f is iso.

A functor F reflects a property P if whenever the F -image of something (object,
arrow,. . . ) has P , then that something has.

A functor F : C → D is called full if for every two objects A,B of C,
F : C(A,B) → D(FA, FB) is a surjection. F is faithful if this map is always
injective.

Exercise 14 A faithful functor reflects epis and monos.

An object X is called terminal if for any object Y there is exactly one morphism
Y → X in the category. Dually, X is initial if for all Y there is exactly one
X → Y .

Exercise 15 A full and faithful functor reflects the property of being a terminal
(or initial) object.

Exercise 16 If X and X ′ are two terminal objects, they are isomorphic, that
is there exists an isomorphism between them. Same for initial objects.

Exercise 17 Let ∼ be a congruence on the category C, as in example g). Show:
if f and g are arrowsX → Y with inverses f−1 and g−1 respectively, then f ∼ g
iff f−1 ∼ g−1.

7



2 Natural transformations

2.1 The Yoneda lemma

A natural transformation between two functors F,G : C → D consists of a family
of morphisms (µC : FC → GC)C∈C0 indexed by the collection of objects of C,
satisfying the following requirement: for every morphism f : C → C ′ in C, the
diagram

FC

Ff

��

µC // GC

Gf

��

FC ′
µC′

// GC ′

commutes in D (the diagram above is called the naturality square). We say
µ = (µC)C∈C0 : F ⇒ G and we call µC the component at C of the natural
transformation µ.

Given natural transformations µ : F ⇒ G and ν : G⇒ H we have a natural
transformation νµ = (νCµC)C : F ⇒ H , and with this composition there is a
category DC with functors F : C → D as objects, and natural transformations
as arrows.

One of the points of the naturality square condition in the definition of a
natural transformation is given by the following proposition. Compare with the
situation in Set: denoting the set of all functions from X to Y by Y X , for any
set Z there is a bijection between functions Z → Y X and functions Z×X → Y
(Set is cartesian closed: see chapter 7).

Proposition 2.1 For categories C, D and E there is a bijection:

Cat(E × C,D)
∼
→ Cat(E ,DC)

Proof. Given F : E × C → D define for every object E of E the functor
FE : C → D by FE(C) = F (E,C); for f : C → C ′ let FE(f) = F (idE , f) :
FE(C) = F (E,C)→ F (E,C ′) = FE(C ′)

Given g : E → E′ in E , the family (F (g, idC) : FE(C) → FE′(C))C∈C0 is a
natural transformation: FE ⇒ FE′ . So we have a functor F 7→ F(−) : E → DC .

Conversely, given a functor G : E → DC we define a functor G̃ : E×C → D on
objects by G̃(E,C) = G(E)(C), and on arrows by G̃(g, f) = G(g)C′G(E)(f) =
G(E′)(f)G(g)C :

G(E)(C) = G̃(E,C)

G(E)(f)

��

G(g)C
// G̃(E′, C) = G(E′)(C)

G(E′)(f)

��

G̃(E,C ′)
G(g)C′

// G̃(E′, C ′) = G(E′)(C ′)

8



Exercise 18 Write out the details. Check that G̃ as just defined, is a functor,
and that the two operations

Cat(E × C,D) // Cat(E ,DC)
oo

are inverse to each other.

An important example of natural transformations arises from the functors hC :
Cop → Set (see example i) in the preceding chapter); defined on objects by
hC(C ′) = C(C ′, C) and on arrows f : C ′′ → C ′ so that hC(f) is composition
with f : C(C ′, C)→ C(C ′′, C).

Given g : C1 → C2 there is a natural transformation

hg : hC1 ⇒ hC2

whose components are composition with g.

Exercise 19 Spell this out.

We have, in other words, a functor

h(−) : C → SetC
op

This functor is also often denoted by Y and answers to the name Yoneda em-
bedding.

An embedding is a functor which is full and faithful and injective on objects.
That Y is injective on objects is easy to see, because idC ∈ hC(C) for each object
C, and idC is in no other set hD(E); that Y is full and faithful follows from the
following

Proposition 2.2 (Yoneda lemma) For every object F of SetC
op

and every

object C of C, there is a bijection fC,F : SetC
op

(hC , F )→ F (C). Moreover, this
bijection is natural in C and F in the following sense: given g : C ′ → C in C
and µ : F ⇒ F ′ in SetC

op

, the diagram

SetC
op

(hC , F )

SetC
op

(g,µ)

��

fC,F
// F (C)

µC′F (g)=F ′(g)µC

��

SetC
op

(hC′ , F ′)
fC′,F ′

// F ′(C ′)

commutes in Set.

Proof. For every object C ′ of C, every element f of hC(C ′) = C(C ′, C) is equal
to idCf which is hC(f)(idC).

9



If κ = (κC′ |C ′ ∈ C0) is a natural transformation: hC ⇒ F then, κC′(f) must
be equal to F (f)(κC(idC)). So κ is completely determined by κC(idC) ∈ F (C)
and conversely, any element of F (C) determines a natural transformation hC ⇒
F .

Given g : C ′ → C in C and µ : F ⇒ F ′ in SetC
op

, the map SetC
op

(g, µ) sends
the natural transformation κ = (κC′′ |C ′′ ∈ C0) : hC ⇒ F to λ = (λC′′ |C ′′ ∈ C0)
where λC′′ : hC′(C ′′)→ F ′(C ′′) is defined by

λC′′(h : C ′′ → C ′) = µC′′(κC′′(gh))

Now
fC′,F ′(λ) = λC′(idC′)

= µC′(κC′(g))
= µC′(F (g)(κC(idC)))
= (µC′F (g))(fC,F (κ))

which proves the naturality statement.

Corollary 2.3 The functor Y : C → SetC
op

is full and faithful.

Proof. Immediate by the Yoneda lemma, since

C(C,C ′) = hC′(C) ∼= SetC
op

(hC , hC′)

and this bijection is induced by Y .

The use of the Yoneda lemma is often the following. One wants to prove that
objects A and B of C are isomorphic. Suppose one can show that for every
object X of C there is a bijection fX : C(X,A) → C(X,B) which is natural in
X ; i.e. given g : X ′ → X in C one has that

C(X,A)

C(g,idA)

��

fX
// C(X,B)

C(g,idB)

��

C(X ′, A)
fX′

// C(X ′, B)

commutes.
Then one can conclude that A and B are isomorphic in C; for, from what

one has just shown it follows that hA and hB are isomorphic objects in SetC
op

;
that is, Y (A) and Y (B) are isomorphic. Since Y is full and faithful, A and B
are isomorphic by the following exercise:

Exercise 20 Check: if F : C → D is full and faithful, and F (A) is isomorphic
to F (B) in D, then A is isomorphic to B in C.

Exercise 21 Suppose objects A and B are such that for every object X in C
there is a bijection fX : C(A,X) → C(B,X), naturally in a sense you define
yourself. Conclude that A and B are isomorphic (hint: duality + the previous).

10



This argument can be carried further. Suppose one wants to show that two
functors F,G : C → D are isomorphic as objects of DC . Let’s first spell out
what this means:

Exercise 22 Show that F and G are isomorphic in DC if and only if there is
a natural transformation µ : F ⇒ G such that all components µC are isomor-
phisms (in particular, if µ is such, the family ((µC)−1|C ∈ C0) is also a natural
transformation G⇒ F ).

Now suppose one has for each C ∈ C0 and D ∈ D0 a bijection

D(D,FC) ∼= D(D,GC)

natural in D and C. This means that the objects hFC and hGC of SetD
op

are
isomorphic, by isomorphisms which are natural in C. By full and faithfulness
of Y , FC and GC are isomorphic in D by isomorphisms natural in C; which
says exactly that F and G are isomorphic as objects of DC .

2.2 Examples of natural transformations

a) Let M and N be two monoids, regarded as categories with one object as in
chapter 1. A functor F : M → N is then just the same as a homomorphism
of monoids. Given two such, say F,G : M → N , a natural transformation
F ⇒ G is (given by) an element n of N such that nF (x) = G(x)n for all
x ∈M ;

b) Let P and Q two preorders, regarded as categories. A functor P → Q
is a monotone function, and there exists a unique natural transformation
between two such, F ⇒ G, exactly if F (x) ≤ G(x) for all x ∈ P .

Exercise 23 In fact, show that if D is a preorder and the category C is small,
i.e. the classes C0 and C1 are sets, then the functor category DC is a preorder.

c) Let U : Grp → Set denote the forgetful functor, and F : Set → Grp the
free functor (see chapter 1). There are natural transformations ε : FU ⇒
idGrp and η : idSet ⇒ UF .

Given a group G, εG takes the string σ = g1 . . . gn to the product g1 · · · gn
(here, the “formal inverses” g−1

i are interpreted as the real inverses in G!).

Given a set A, ηA(a) is the singleton string a.

d) Let i : Abgp → Grp be the inclusion functor and r : Grp → Abgp the
abelianization functor defined in example m) in chapter 1. There is ε :
ri⇒ idAbgp and η : idGrp ⇒ ir.

The components ηG of η are the quotient maps G → G/[G,G]; the com-
ponents of ε are isomorphisms.

11



e) There are at least two ways to associate a category to a set X : let F (X)
be the category with as objects the elements of X , and as only arrows
identities (a category of the form F (X) is called discrete; and G(X) the
category with the same objects but with exactly one arrow fx,y : x → y
for each pair (x, y) of elements of X (We might call G(X) an indiscrete
category).

Exercise 24 Check that F and G can be extended to functors: Set→ Cat and
describe the natural transformation µ : F ⇒ G which has, at each component,
the identity function on objects.

f) Every class of arrows of a category C can be viewed as a natural transfor-
mation. Suppose S ⊆ C1. Let F (S) be the discrete category on S as in
the preceding example. There are the two functors dom, cod : F (S)→ C,
giving the domain and the codomain, respectively. For every f ∈ S we
have f : dom(f) → cod(f), and the family (f |f ∈ S) defines a natural
transformation: dom⇒ cod.

g) Let A and B be sets. There are functors (−)×A : Set→ Set and (−)×B :
Set → Set. Any function f : A → B gives a natural transformation
(−)×A⇒ (−)×B.

h) A category C is called a groupoid if every arrow of C is an isomorphism.
Let C be a groupoid, and suppose we are given, for each object X of C, an
arrow µX in C with domain X .

Exercise 25 Show that there is a functor F : C → C in this case, which acts
on objects by F (X) = cod(µX ), and that µ = (µX |X ∈ C0) is a natural trans-
formation: idC ⇒ F .

i) Given categories C, D and an object D of D, there is the constant functor
∆D : C → D which assigns D to every object of C and idD to every arrow
of C.

Every arrow f : D → D′ gives a natural transformation ∆f : ∆D ⇒ ∆D′

defined by (∆f )C = f for each C ∈ C0.

j) Let P(X) denote the power set of a set X : the set of subsets of X . The
powerset operation can be extended to a functor P : Set → Set. Given a
function f : X → Y define P(f) by P(f)(A) = f [A], the image of A ⊆ X
under f .

There is a natural transformation η : idSet ⇒ P such that ηX(x) = {x} ∈
P(X) for each set X .

There is also a natural transformation µ : PP ⇒ P . Given A ∈ PP(X),
so A is a set of subsets of X , we take its union

⋃

(A) which is a subset of
X . Put µX(A) =

⋃

(A).

12



2.3 Equivalence of categories; an example

As will become clear in the following chapters, equality between objects plays
only a minor role in category theory. The most important categorical notions
are only defined “up to isomorphism”. This is in accordance with mathematical
practice and with common sense: just renaming all elements of a group does
not really give you another group.

We have already seen one example of this: the property of being a terminal
object defines an object up to isomorphism. That is, any two terminal objects
are isomorphic. There is, in the language of categories, no way of distinguishing
between two isomorphic objects, so this is as far as we can get.

However, once we also consider functor categories, it turns out that there is
another relation of “sameness” between categories, weaker than isomorphism of
categories, and yet preserving all “good” categorical properties. Isomorphism of
categories C and D requires the existence of functors F : C → D and G : D → C
such that FG = idD and GF = idC ; but bearing in mind that we can’t really say
meaningful things about equality between objects, we may relax the requirement
by just asking that FG is isomorphic to idD in the functor category DD (and
the same for GF ); doing this we arrive at the notion of equivalence of categories,
which is generally regarded as the proper notion of sameness.

So two categories C and D are equivalent if there are functors F : C → D,
G : D → C and natural transformations µ : idC ⇒ GF and ν : idD ⇒ FG
whose components are all isomorphisms. F and G are called pseudo inverses of
each other. A functor which has a pseudo inverse is also called an equivalence
of categories.

As a simple example of an equivalence of categories, take a preorder P . Let
Q be the quotient of P by the equivalence relation which contains the pair (x, y)
iff both x ≤ y and y ≤ x in P . Let π : P → Q be the quotient map. Regarding
P and Q as categories, π is a functor, and in fact an equivalence of categories,
though not in general an isomorphism.

Exercise 26 Work this out.

Exercise 27 Show that a category is equivalent to a discrete category if and
only if it is a groupoid and a preorder.

In this section I want to give an important example of an equivalence of cat-
egories: the so-called “Lindenbaum-Tarski duality between Set and Complete
Atomic Boolean Algebras”. A duality between categories C and D is an equiv-
alence between Cop and D (equivalently, between C and Dop).

We need some definitions. A lattice is a partially ordered set in which every
two elements x, y have a least upper bound (or join) x ∨ y and a greatest lower
bound (or meet) x ∧ y; moreover, there exist a least element 0 and a greatest
element 1.

13



Such a lattice is called a Boolean algebra if every element x has a complement
¬x, that is, satisfying x∨¬x = 1 and x∧¬x = 0; and the lattice is distributive,
which means that x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z.

In a Boolean algebra, complements are unique, for if both y and z are com-
plements of x, then

y = y ∧ 1 = y ∧ (x ∨ z) = (y ∧ x) ∨ (y ∧ z) = 0 ∨ (y ∧ z) = y ∧ z

so y ≤ z; similarly, z ≤ y so y = z. This is a non-example:

1

��
��

��
�

??
??

??
?

x

/
/
/
/
/
/
/
/
/
/
/
/
/
/ z

y

��
��

��
�

0

It is a lattice, and every element has a complement, but it is not distributive
(check!).

A Boolean algebra B is complete if every subset A of B has a least upper
bound

∨

A and a greatest lower bound
∧

A.
An atom in a Boolean algebra is an element x such that 0 < x but for no

y we have 0 < y < x. A Boolean algebra is atomic if every x is the join of the
atoms below it:

x =
∨

{a|a ≤ x and a is an atom}

The category CABool is defined as follows: the objects are complete atomic
Boolean algebras, and the arrows are complete homomorphisms, that is: f :
B → C is a complete homomorphism if for every A ⊆ B,

f(
∨

A) =
∨

{f(a)|a ∈ A} and f(
∧

A) =
∧

{f(a)|a ∈ A}

Exercise 28 Show that 1 =
∧

∅ and 0 =
∨

∅. Conclude that a complete
homomorphism preserves 1, 0 and complements.

Exercise 29 Show that
∧

A = ¬
∨

{¬a|a ∈ A} and conclude that if a function
preserves all

∨

’s, 1 and complements, it is a complete homomorphism.

Theorem 2.4 The category CABool is equivalent to Setop.

Proof. For every set X , P(X) is a complete atomic Boolean algebra and if
f : Y → X is a function, then f−1 : P(X)→ P(Y ) which takes, for each subset

14



of X , its inverse image under f , is a complete homomorphism. So this defines
a functor F : Setop → CABool.

Conversely, given a complete atomic Boolean algebra B, let G(B) be the set
of atoms of B. Given a complete homomorphism g : B → C we have a function
G(g) : G(C) → G(B) defined by: G(g)(c) is the unique b ∈ G(B) such that
c ≤ g(b). This is well-defined: first, there is an atom b with c ≤ g(b) because
1B =

∨

G(B) (B is atomic), so 1C = g(1B) =
∨

{g(b)|b is an atom} and:

Exercise 30 Prove: if c is an atom and c ≤
∨

A, then there is a ∈ A with
c ≤ a (hint: prove for all a, b that a∧ b = 0⇔ a ≤ ¬b, and prove for a, c with c
atom: c 6≤ a⇔ a ≤ ¬c).

Secondly, the atom b is unique since c ≤ g(b) and c ≤ g(b′) means c ≤ g(b) ∧
g(b′) = g(b ∧ b′) = g(0) = 0.

So we have a functor G : CABool→ Setop.
Now the atoms of the Boolean algebraP(X) are exactly the singleton subsets

of X , so GF (X) = {{x}|x ∈ X} which is clearly isomorphic to X . On the other
hand, FG(B) = P({b ∈ B | b is an atom}). There is a map from FG(B) to B
which sends each set of atoms to its least upper bound in B, and this map is
an isomorphism in CABool.

Exercise 31 Prove the last statement: that the map from FG(B) to B, defined
in the last paragraph of the proof, is an isomorphism.

Exercise 32 Prove that F : C → D is an equivalence of categories if and only
if F is full and faithful, and essentially surjective on objects , that means: for
any D ∈ D0 there is C ∈ C0 such that F (C) is isomorphic to D.

15



3 (Co)cones and (Co)limits

3.1 Limits

Given a functor F : C → D, a cone for F consists of an object D of D together
with a natural transformation µ : ∆D ⇒ F (∆D is the constant functor with
value D). In other words, we have a family (µC : D → F (C)|C ∈ C0), and the
naturality requirement in this case means that for every arrow f : C → C ′ in C,

D
µC

||zz
zz

zz
zz µC′

""E
EE

EE
EE

E

F (C)
F (f)

// F (C ′)

commutes in D (this diagram explains, I hope, the name “cone”). Let us denote
the cone by (D,µ). D is called the vertex of the cone.

A map of cones (D,µ)→ (D′, µ′) is a map g : D → D′ such that µ′
Cg = µC

for all C ∈ C0.
Clearly, there is a category Cone(F ) which has as objects the cones for F

and as morphisms maps of cones.
A limiting cone for F is a terminal object in Cone(F ). Since terminal objects

are unique up to isomorphism, as we have seen, any two limiting cones are
isomorphic in Cone(F ) and in particular, their vertices are isomorphic in D.

A functor F : C → D is also called a diagram in D of type C, and C is the
index category of the diagram.

Let us see what it means to be a limiting cone, in some simple, important
cases.

i) A limiting cone for the unique functor ! : 0→ D (0 is the empty category)
“is” a terminal object in D. For every object D of D determines, together
with the empty family, a cone for !, and a map of cones is just an arrow
in D. So Cone(!) is isomorphic to D.

ii) Let 2 be the discrete category with two objects x, y. A functor 2→ D is
just a pair 〈A,B〉 of objects of D, and a cone for this functor consists of

an object C of D and two maps

C
µA //

µB
��

@@
@@

@@
@ A

B

since there are no nontrivial

arrows in 2.

(C, (µA, µB)) is a limiting cone for 〈A,B〉 iff the following holds: for any
object D and arrows f : D → A, g : D → B, there is a unique arrow

16



h : D → C such that
C

µA

��
µB

��
0
0
0
0
0
0
0
0
0
0
0
0
0
0

D

h

>>~
~

~
~

f
//

g

''PPPPPPPPPPPPPP A

B

commutes. In other words, there is, for any D, a 1-1 correspondence

between maps D → C and pairs of maps

D

��~~
~~

~~
~

  @
@@

@@
@@

A B

This is

the property of a product; a limiting cone for 〈A,B〉 is therefore called a
product cone, and usually denoted:

A× B
πA

||xx
xx

xx
xx

x
πB

##F
FF

FF
FF

FF

A B

The arrows πA and πB are called projections.

iii) Let 2̂ denote the category x
a //

b
// y . A functor 2̂→ D is the same thing

as a parallel pair of arrows A
f

//

g
// B in D; I write 〈f, g〉 for this functor.

A cone for 〈f, g〉 is:

D
µA

��~~
~~

~~
~

µB

  
@@

@@
@@

@

A
f

//

g
// B

But µB = fµA = gµA is already defined from µA, so giving a cone is the
same as giving a map µA : D → A such that fµA = gµA. Such a cone is
limiting iff for any other map h : C → A with fh = gh, there is a unique
k : C → D such that h = µAk.

We call µA, if it is limiting, an equalizer of the pair f, g, and the diagram

D
µA // A

f
//

g
// B an equalizer diagram.

In Sets, an equalizer of f, g is isomorphic (as a cone) to the inclusion
of {a ∈ A|f(a) = g(a)} into A. In categorical interpretations of logical
systems (see chapters 4 and 7), equalizers are used to interpret equality
between terms.

17



Exercise 33 Show that every equalizer is a monomorphism.

Exercise 34 If E
e // X

f
//

g
// Y is an equalizer diagram, show that e is an

isomorphism if and only if f = g.

Exercise 35 Show that in Set, every monomorphism fits into an equalizer di-
agram.

iv) Let J denote the category

y

b

��
x

a
// z

A functor F : J → D is specified

by giving two arrows in D with the same codomain, say f : X → Z,
g : Y → Z. A limit for such a functor is given by an object W together

with projections

W
pY

//

pX

��

Y

X

satisfying fpX = gpY , and such that,

given any other pair of arrows:

V
r //

s

��

Y

X

with gr = fs, there is a

unique arrow V → W such that

V

s

��
0
0
0
0
0
0
0
0
0
0
0
0
0
0

  A
AA

AA
AA

A
r

((PPPPPPPPPPPPPPP

W

pX

��

pY
// Y

g

��

X
f

// Z

commutes.

The diagram

W

pX

��

pY // Y

g

��

X
f

// Z

is called a pullback diagram. In Set, the pullback cone for f, g is isomorphic
to

{(x, y) ∈ X × Y |f(x) = g(y)}

with the obvious projections.

18



We say that a category D has binary products (equalizers, pullbacks) iff every
functor 2 → D (2̂ → D, J → D, respectively) has a limiting cone. Some
dependencies hold in this context:

Proposition 3.1 If a category D has a terminal object and pullbacks, it has
binary products and equalizers.
If D has binary products and equalizers, it has pullbacks.

Proof. Let 1 be the terminal object inD; given objectsX and Y , if

C

pY

��

pX
// X

��

Y // 1

is a pullback diagram, then

C
pX //

pY

��

X

Y

is a product cone.

Given a product cone

A×B
πA //

πB

��

A

B

and maps

X
f

//

g

��

A

B

we write

X
〈f,g〉
→ A × B for the unique factorization through the product. Write also

δ : Y → Y × Y for 〈idY , idY 〉.
Now given f, g : X → Y , if

E

��

e // X

〈f,g〉

��

Y
δ

// Y × Y

is a pullback diagram, then E
e // X

f
//

g
// Y is an equalizer diagram. This

proves the first statement.

As for the second: given

X

f

��

Y g
// Z

let E
e // X × Y

fπX //

gπY
// Z be an

equalizer; then

E

πY e

��

πXe // X

f

��

Y g
// Z

is a pullback diagram.

19



Exercise 36 Let

A

a

��

b // B

f

��

X g
// Y

a pullback diagram with f mono. Show that a is also mono. Also, if f is iso
(an isomorphism), so is a.

Exercise 37 Given two commuting squares:

A

a

��

b // B

f

��

c // C

d

��

X g
// Y

h
// Z

a) if both squares are pullback squares, then so is the composite square

A

a

��

cb // C

d

��

X
hg

// Z

b) If the right hand square and the composite square are pullbacks, then so
is the left hand square.

Exercise 38 f : A→ B is a monomorphism if and only if

A

idA

��

idA // A

f

��

A
f

// B

is a pullback diagram.

A monomorphism f : A→ B which fits into an equalizer diagram

A
f

// B
g

//

h
// C

is called a regular mono.

20



Exercise 39 If

A

b

��

a // X

g

��

B
f

// Y

is a pullback and g is regular mono, so is b.

Exercise 40 If f is regular mono and epi, f is iso. Every split mono is regular.

Exercise 41 Give an example of a category in which not every mono is regular.

Exercise 42 In Grp, every mono is regular [This is not so easy].

Exercise 43 Characterize the regular monos in Pos.

Exercise 44 If a category D has binary products and a terminal object, it
has all finite products, i.e. limiting cones for every functor into D from a finite
discrete category.

Exercise 45 Suppose C has binary products and suppose for every ordered pair

(A,B) of objects of C a product cone

A×B

πB

��

πA // A

B

has been chosen.

a) Show that there is a functor: C × C
−×−
→ C (the product functor) which

sends each pair (A,B) of objects to A × B and each pair of arrows (f :
A→ A′, g : B → B′) to f × g = 〈fπA, gπB〉.

b) From a), there are functors:

C × C × C
(−×−)×−

//

−×(−×−)
// C

sending (A,B,C) to
(A×B)× C
A× (B × C)

Show that there is a natural trans-

formation a = (aA,B,C |A,B,C ∈ C0) from (− × −) × − to − × (− × −)

21



such that for any four objects A,B,C,D of C:

((A×B)× C)×D

aA,B,C×idD

��

aA×B,C,D
// (A×B)× (C ×D)

aA,B,C×D

��

(A× (B × C))×D

aA,B×C,D
))TTTTTTTTTTTTTTT

A× (B × (C ×D))

A× ((B × C)×D)

idA×aB,C,D

55jjjjjjjjjjjjjjj

commutes (This diagram is called “MacLane’s pentagon”).

A functor F : C → D is said to preserve limits of type E if for all functors M :
E → C, if (D,µ) is a limiting cone for M in C, then (FD,Fµ = (F (µE)|E ∈ E0))
is a limiting cone for FM in D.

So, a functor F : C → D preserves binary products if for every product dia-

gram

A×B

πA

��

πB // B

A

its F -image

F (A×B)

F (πA)

��

F (πB)
// F (B)

F (A)

is again a product

diagram. Similarly for equalizers and pullbacks.
Some more terminology: F is said to preserve all finite limits if it preserves

limits of type E for every finite E . A category which has all finite limits is called
lex (left exact), cartesian or finitely complete.

Exercise 46 If a category C has equalizers, it has all finite equalizers: for every
category E of the form

X
f1 //

fn

//

... Y

every functor E → C has a limiting cone.

Exercise 47 Suppose F : C → D preserves equalizers (and C has equalizers)
and reflects isomorphisms. Then F is faithful.

Exercise 48 Let C be a category with finite limits. Show that for every object
C of C, the slice category C/C (example j) of 1.1) has binary products: the
vertex of a product diagram for two objects D → C, D′ → C is D′′ → C where

D′′

��

// D

��

D′ // C

is a pullback square in C.

22



3.2 Limits by products and equalizers

In Set, every small diagram has a limit; given a functor F : E → Set with E
small, there is a limiting cone for F in Set with vertex

{(xE)E∈E0 ∈
∏

E∈E0

F (E) | ∀E
f
→ E′ ∈ E1(F (f)(xE) = xE′)}

So in Set, limits are equationally defined subsets of suitable products. This
holds in any category:

Proposition 3.2 Suppose C has all small products (including the empty prod-
uct, i.e. a terminal object 1) and equalizers; then C has all small limits.

Proof. Given a set I and an I-indexed family of objects (Ai|i ∈ I) of C, we
denote the product by

∏

i∈I Ai and projections by πi :
∏

i∈I Ai → Ai; an arrow
f : X →

∏

i∈I Ai which is determined by the compositions fi = πif : X → Ai,
is also denoted (fi|i ∈ I).

Now given E → C with E0 and E1 sets, we construct

E
e //

∏

i∈E0
F (i)

(πcod(u)|u∈E1)
//

(F (u)πdom(u) |u∈E1)
//
∏

u∈E1
F (cod(u))

in C as an equalizer diagram. The family (µi = πie : E → F (i)|i ∈ E0) is a
natural transformation ∆E ⇒ F because, given an arrow u ∈ E1, say u : i→ j,
we have that

E
πie

}}{{
{{

{{
{{ πje

!!C
CC

CC
CC

C

F (i)
F (u)

// F (j)

commutes since F (u)πie = F (u)πdom(u)e = πcod(u)e = πje.
So (E, µ) is a cone for F , but every other cone (D, ν) for F gives a map

d : D →
∏

i∈E0
F (i) equalizing the two horizontal arrows; so factors uniquely

through E.

Exercise 49 Check that “small” in the statement of the proposition, can be
replaced by “finite”: if C has all finite products and equalizers, C is finitely
complete.

Exercise 50 Show that if C is complete, then F : C → D preserves all limits if
F preserves products and equalizers. This no longer holds if C is not complete!
That is, F may preserve all products and equalizers which exist in C, yet not
preserve all limits which exist in C.

23



3.3 Complete Categories

A category is called complete if it has limits of type E for all small E .
In general, limits over large (i.e. not small) diagrams need not exist. For

example in Set, there is a limiting cone for the identity functor Set → Set (its
vertex is the empty set), but not for the constant functor ∆A : C → Set if C is
a large discrete category and A has more than one element.

The categories Set, Top, Pos, Mon, Grp, Grph, Rng,. . . are all complete. For
instance in Top, the product of a set (Xi | i ∈ I) of topological spaces is the
set

∏

i∈I Xi with the product topology; the equalizer of two continuous maps

X
f

//

g
// Y is the inclusion X ′ ⊆ X where X ′ = {x ∈ X | f(x) = g(x)} with

the subspace topology from X .

Exercise 51 What are monomorphisms in Top? Is every mono regular in Top?

The category SetC
op

is also complete, and limits are “computed pointwise”.
That is, let F : D → SetC

op

be a diagram in SetC
op

. For every C ∈ C0 there is
a functor FC : D → Set, given by FC(D) = F (D)(C) and for f : D → D′ in D,
FC(f) = F (f)C : F (D)(C)→ F (D′)(C).

Since Set is complete, every FC has a limiting cone (XC , µC) in Set. Now if

C ′ g
→ C is a morphism in C, the collection of arrows

{XC
(µC )D
→ F (D)(C)

F (D)(g)
→ F (D)(C ′) = FC′(D) |D ∈ D0}

is a cone for FC′ with vertex XC , since for any f : D → D′ we have F (f)C′ ◦
F (D)(g)◦(µC)D = F (D′)(g)◦F (f)C◦(µC)D (by naturality of F (f)) = F (D′)(g)◦
(µC)D′ (because (XC , µC) is a cone).

Because (XC′ , µC′) is a limiting cone for FC′ , there is a unique arrow Xg :
XC → XC′ in Set such that F (D)(g) ◦ (µC)D = (µC′)D ◦ Xg for all D ∈ D0.

By the uniqueness of these arrows, we have an object X of SetC
op

, and arrows
νD : X → F (D) for all D ∈ D0, and the pair (X, ν) is a limiting cone for F in

SetC
op

.

Exercise 52 Check the remaining details.

It is a consequence of the Yoneda lemma that the Yoneda embedding Y : C →
SetC

op

preserves all limits which exist in C. For, let F : D → C be a diagram with
limiting cone (E, ν) and let (X, δ) be a limiting cone for the composition Y ◦F :

D → SetC
op

. By the Yoneda lemma, X(C) is in natural 1-1 correspondence

with the set of arrows Y (C) → X in SetC
op

; which by the fact that (X, δ) is a
limiting cone, is in natural 1-1 correspondence with cones (Y (C), µ) for Y ◦ F
with vertex Y (C); since Y is full and faithful every such cone comes from a
unique cone (C, µ′) for F in C, hence from a unique map C → E in C.

So, X(C) is naturally isomorphic to C(C,E) whence X is isomorphic to
Y (E), by an isomorphism which transforms δ into Y ◦ ν = (Y (νC) |C ∈ C0).

24



To finish this section a little theorem by Peter Freyd which says that every
small, complete category is a complete preorder:

Proposition 3.3 Suppose C is small and complete. Then C is a preorder.

Proof. If not, there are objects A,B in C such that there are two distinct maps
f, g : A → B. Since C1 is a set and C complete, the product

∏

h∈C1
B exists.

Arrows k : A →
∏

h∈C1
B are in 1-1 correspondence with families of arrows

(kh : A→ B |h ∈ C1). For every subset X ⊆ C1 define such a family by:

kh =

{

f if h ∈ X
g else

This gives an injective function from 2C1 into C(A,
∏

h∈C1
B) hence into C1,

contradicting Cantor’s theorem in set theory.

3.4 Colimits

The dual notion of limit is colimit. Given a functor F : E → C there is clearly a
functor F op : Eop → Cop which does “the same” as F . We say that a colimiting
cocone for F is a limiting cone for F op.

So: a cocone for F : E → C is a pair (ν,D) where ν : F ⇒ ∆D and a
colimiting cocone is an initial object in the category Cocone(F ).

Examples

i) a colimiting cocone for ! : 0→ C “is” an initial object of C

ii) a colimiting cocone for 〈A,B〉 : 2 → C is a coproduct of A and B in C:
usually denoted A + B or A t B; there are coprojections or coproduct
inclusions

A
νA

##F
FF

FF
FF

FF

B νB
// A tB

with the property that, given any pair of arrows A
f
→ C, B

g
→ C there is a

unique map

[

f
g

]

: AtB → C such that f =

[

f
g

]

νA and g =

[

f
g

]

νB

iii) a colimiting cocone for A
f

//

g
// B (as functor 2̂→ C) is given by a map

B
c
→ C satisfying cf = cg, and such that for any B

h
→ D with hf = hg

there is a unique C
h′

→ D with h = h′c. c is called a coequalizer for f and
g; the diagram A

//
// B // C a coequalizer diagram.

Exercise 53 Is the terminology “coproduct inclusions” correct? That is, it
suggests they are monos. Is this always the case?

Formulate a condition on A and B which implies that νA and νB are monic.

25



In Set, the coproduct of X and Y is the disjoint union ({0} ×X) ∪ ({1} × Y )

of X and Y . The coequalizer of X
f

//

g
// Y is the quotient map Y → Y/ ∼

where ∼ is the equivalence relation generated by

y ∼ y′ iff there is x ∈ X with f(x) = y and g(x) = y′

The dual notion of pullback is pushout. A pushout diagram is a colimiting

cocone for a functor Γ→ C where Γ is the category

x

��

// y

z

. Such a diagram

is a square

X

g

��

f
// Y

a

��

Z
b

// P

which commutes and such that, given

Y
α

��
??

??
??

?

Z
β

// Q

with αf = βg, there is a

unique P
p
→ Q with α = pa and β = pb. In Set, the pushout of X

f
→ Y and

X
g
→ Z is the coproduct Y t Z where the two images of X are identified:

X

Z

X

X

Y

X
H

HHj

�
��*

�
��*

H
HHj

Exercise 54 Give yourself, in terms of X
f
→ Y and X

g
→ Z, a formal definition

of a relation R on Y tZ such that the pushout of f and g is Y tZ/ ∼, ∼ being
the equivalence relation generated by R.

One can now dualize every result and exercise from the section on limits:

26



Exercise 55 f is epi if and only if

f

��

f
//

id

��

id
//

is a pushout diagram.

Exercise 56 Every coequalizer is an epimorphism; if e is a coequalizer of f and
g, then e is iso iff f = g

Exercise 57 If C has an initial object and pushouts, C has binary coproducts
and coequalizers; if C has binary coproducts and coequalizers, C has pushouts.

Exercise 58 If a

��

//

f

��//

is a pushout diagram, then a epi implies f epi, and

a regular epi (i.e. a coequalizer) implies f regular epi.

Exercise 59 The composition of two puhout squares is a pushout; if both the
first square and the composition are pushouts, the second square is.

Exercise 60 If C has all small (finite) coproducts and coequalizers, C has all
small (finite) colimits.

Some miscellaneous exercises:

Exercise 61 Call an arrow f a stably regular epi if whenever a

��

//

f

��//

is a

pullback diagram, the arrow a is a regular epi. Show: in Pos, X
f
→ Y is a stably

regular epi if and only if for all y, y′ in Y :

y ≤ y′ ⇔ ∃x ∈ f−1(y)∃x′ ∈ f−1(y′).x ≤ x′

Show by an example that not every epi is stably regular in Pos.

Exercise 62 In Grp, every epi is regular.

Exercise 63 Characterize coproducts in Abgrp.

27



4 A little piece of categorical logic

One of the major achievements of category theory in mathematical logic and
in computer science, has been a unified treatment of semantics for all kinds of
logical systems and term calculi which are the basis for programming languages.

One can say that mathematical logic, seen as the study of classical first
order logic, first started to be a real subject with the discovery, by Gödel,
of the completeness theorem for set-theoretic interpretations: a sentence ϕ is
provable if and only if ϕ is true in all possible interpretations. This unites the
two approaches to logic: proof theory and model theory, makes logic accessible
for mathematical methods and enables one to give nice and elegant proofs of
proof theoretical properties by model theory (for example, the Beth and Craig
definability and interpolation theorems).

However the completeness theorem needs generalization once one considers
logics, such as intuitionistic logic (which does not admit the principle of excluded
middle), minimal logic (which has no negation) or modal logic (where the logic
has an extra operator, expressing “necessarily true”), for which the set-theoretic
interpretation is not complete. One therefore comes with a general definition of
“interpretation” in a category C of a logical system, which generalizes Tarski’s
truth definition: this will then be the special case of classical logic and the
category Set.

In this chapter I treat, for reasons of space, only a fragment of first order
logic: regular logic. On this fragment the valid statements of classical and
intuitionistic logic coincide.

For an interpretation of a term calculus like the λ-calculus, which is of
paramount importance in theoretical computer science, the reader is referred
to chapter 7.

4.1 Regular categories and subobjects

Definition 4.1 A category C is called regular if the following conditions hold:

a) C has all finite limits;

b) For every arrow f , if

Z

p1

��

p0 // X

f

��

X
f

// Y

is a pullback (then Z
p0 //

p1
// X is called the kernel pair of f), the coequal-

izer of p0, p1 exists;

c) Regular epimorphisms (coequalizers) are stable under pullback, that is: in

28



a pullback square

a

��

//

f

��//

if f is regular epi, so is a.

Examples. In Set, as in Grp, Top, etc., the (underlying) set which is the vertex
of the kernel pair of f : X → Y is Xf = {(x, x′)| f(x) = f(x′)}. The coequalizer

of Xf

π1 //

π2

// X is (up to isomorphism) the map X → Im(f) where Im(f) is the

set-theoretic image of f as subset of Y .
These coequalizers exist in Set, Top, Grp, Pos. . . . Moreover, in Set and Grp

every epi is regular, and (since epis in Set and Grp are just surjective functions)
stable under pullback; hence Set and Grp are examples of regular categories.

Top is not regular! It satisfies the first two requirements of the definition,
but not the third. One can prove that the functor (−)×S : Top→ Top preserves
all quotient maps only if the space S is locally compact. Since every coequalizer
is a quotient map, if S is not locally compact there will be pullbacks of form

X × S

��

f×idS // Y × S

��

X
f

// Y

with f regular epi, but f × idS not.

Exercise 64 This exercise shows that Pos is not regular either. Let X and Y
be the partial orders {x ≤ y, y′ ≤ z} and {a ≤ b ≤ c} respectively.

a) Prove that f(x) = a, f(y) = f(y′) = b, f(z) = c defines a regular epimor-
phism: X → Y .

b) Let Z be {a ≤ c} ⊂ Y and W = f−1(Z) ⊂ X . Then

W

��

// Z

��

X
f

// Y

is a pullback, but W → Z is not the coequalizer of anything.

Proposition 4.2 In a regular category, every arrow f : X → Y can be factored
as f = me : X

e
→ E

m
→ Y where e is regular epi and m is mono; and this

factorization is unique in the sense that if f is also m′e′ : X
e′
→ E′ m

′

→ Y with m′

mono and e′ regular epi, there is an isomorphism σ : E → E ′ such that σe = e′

and m′σ = m.

29



Proof. Given f : X → Y we let X
e
→ E be the coequalizer of the kernel pair

Z
p0

//

p1
// X of f . Since fp0 = fp1 there is a unique m : E → Y such that

f = me. By construction e is regular epi; we must show that m is mono, and
the uniqueness of the factorization.

Suppose mg = mh for g, h : W → E; we prove that g = h. Let

V

〈q0,q1〉

��

a // W

〈g,h〉

��

X ×X
e×e

// E ×E

be a pullback square. Then

fq0 = meq0 = mga = mha = meq1 = fq1

so there is a unique arrow V
b
→ Z such that 〈q0, q1〉 = 〈p0, p1〉b : V → X ×X

(because of the kernel pair property). It follows that

ga = eq0 = ep0b = ep1b = eq1 = ha

I claim that a is epi, so it follows that g = h. It is here that we use the
requirement that regular epis are stable under pullback. Now e× e : X ×X →
E ×E is the composite

X ×X
e×idX→ E ×X

idE×e
→ E ×E

and both maps are regular epis since both squares

X ×X

π0

��

e×idX // E ×X

π0

��

X e
// E

and

E ×X

π1

��

idE×e
// E ×E

π1

��

X e
// E

are pullbacks. The map a, being the pullback of a composite of regular epis, is
then itself the composite of regular epis (check this!), so in particular epi.

This proves that m is mono, and we have our factorization.
As to uniqueness, suppose we had another factorization f = m′e′ with m′

mono and e′ regular epi. Then m′e′p0 = fp0 = fp1 = m′e′p1 so since m′ mono,
e′p0 = e′p1. Because e is the coequalizer of p0 and p1, there is a unique σ:

e //

e′ ��
??

??
??

?

σ

��

Then m′σe = m′e′ = f = me so since e epi, m = m′σ.

Now e′ : X → E′ is a coequalizer; say U
k //

l
// X

e′ // E′ is a coequalizer

diagram. Then it follows that ek = el (since mek = m′e′k = m′e′l = mel

30



and m mono) so there is a unique τ :

e //

e′ ��
??

??
??

?

τ

OO

Then mτσe = mτe′ = me;

since m mono and e epi, τσ = idE . Similarly, στ = idE′ . So σ is the required
isomorphism.

Exercise 65 Check this detail: in a regular category C, if is a pullback diagram
and b = c1c2 with c1 and c2 regular epis, then a = a1a2 for some regular epis
a1, a2.

Subobjects. In any category C we define a subobject of an object X to be an
equivalence class of monomorphisms Y

m
→ X , where Y

m
→ X is equivalent to

Y ′ m
′

→ X if there is an isomorphism σ : Y → Y ′ with m′σ = m (then mσ−1 = m′

follows). We say that Y
m
→ X represents a smaller subobject than Y ′ m

′

→ X if
there is σ : Y → Y ′ with m′σ = m (σ not necessarily iso; but check that σ is
always mono).

The notion of subobject is the categorical version of the notion of subset in
set theory. In Set, two injective functions represent the same subobject iff their
images are the same; one can therefore identify subobjects with subsets. Note
however, that in Set we have a “canonical” choice of representative for each
subobject: the inclusion of the subset to which the subobject corresponds. This
choice is not always available in general categories.

We have a partial order Sub(X) of subobjects of X , ordered by the smaller-
than relation.

Proposition 4.3 In a category C with finite limits, each pair of elements of
Sub(X) has a greatest lower bound. Moreover, Sub(X) has a largest element.

Proof. If Y
m
→ X and Y ′ m

′

→ X represent two subobjects ofX and

Z

��

// Y

m

��

Y ′
m′

// X

is a pullback, then Z → X is mono, and represents the greatest lower bound
(check!).

Of course, the identity X
idX→ X represents the top element of Sub(X).

Because the factorization of X
f
→ Y as X

e
→ E

m
→ Y with e regular epi and

m mono, in a regular category C, is only defined up to isomorphism, it defines
rather a subobject of Y than a mono into Y ; this defined subobject is called the
image of f and denoted Im(f) (compare with the situation in Set).

Exercise 66 Im(f) is the smallest subobject of Y through which f factors:

for a subobject represented by n : A → Y we have that there is X
a
→ A with

f = na, if and only if Im(f) is smaller than the subobject represented by n.

31



Since monos and isos are stable under pullback, in any category C with pullbacks,
any arrow f : X → Y determines an order preserving map f ∗ : Sub(Y ) →

Sub(X) by pullback along f : if E
m
→ Y represents the subobject M of Y and

F

n

��

// E

m

��

X
f

// Y

is a pullback, F
n
→ X represents f∗(M).

Exercise 67 Check that f∗ is well defined and order preserving.

Proposition 4.4 In a regular category, each f ∗ preserves greatest lower bounds
and images, that is: for f : X → Y ,

i) for subobjects M,N of Y , f∗(M ∧N) = f∗(M) ∧ f∗(N);

ii) if g′

��

//

g

��

f
//

is a pullback, then f∗(Im(g)) = Im(g′).

Exercise 68 Prove proposition 4.4.

Exercise 69 Suppose f : X → Y is an arrow in a regular category. For
a subobject M of X , represented by a mono E

m
→ X , write ∃f (M) for the

subobject Im(fm) of Y .

a) Show that ∃f (M) is well-defined, that is: depends only on M , not on the
representative m.

b) Show that if M ∈ Sub(X) and N ∈ Sub(Y ), then ∃f (M) ≤ N if and only
if M ≤ f∗(N).

4.2 The logic of regular categories

The fragment of first order logic we are going to interpret in regular categories
is the so-called regular fragment.

The logical symbols are = (equality), ∧ (conjunction) and ∃ (existential
quantification). A language consists of a set of sorts S, T, . . .; a denumerable
collection of variables xS1 , x

S
2 , . . . of sort S, for each sort; a collection of function

symbols (f : S1, . . . , Sn → S) and relation symbols (R ⊆ S1, . . . , Sm). The case
n = 0 is not excluded (one thinks of constants of a sort in case of 0-placed
function symbols, and of atomic propositions in the case of 0-placed relation
symbols), but not separately treated. We now define, inductively, terms of sort
S and formulas.

Definition 4.5 Terms of sort S are defined by:

i) xS is a term of sort S if xS is a variable of sort S;

32



ii) if t1, . . . , tn are terms of sorts S1, . . . , Sn respectively, and

(f : S1, . . . Sn → S)

is a function symbol of the language, then f(t1, . . . , tn) is a term of sort
S.

Formulas are defined by:

i) > is a formula (the formula “true”);

ii) if t and s are terms of the same sort, then t = s is a formula;

iii) if (R ⊆ S1, . . . , Sm) is a relation symbol and t1, . . . , tm are terms of sorts
S1, . . . , Sm respectively, then R(t1, . . . , tm) is a formula;

iv) if ϕ and ψ are formulas then (ϕ ∧ ψ) is a formula;

v) if ϕ is a formula and x a variable of some sort, then ∃xϕ is a formula.

An interpretation of such a language in a regular category C is given by choosing
for each sort S an object [[S ]] of C, for each function symbol (f : S1, . . . , Sn → S)
of the language, an arrow [[ f ]] : [[S1 ]] × · · · × [[Sn ]] → [[S ]] in C, and for each
relation symbol (R ⊆ S1, . . . , Sm) a subobject [[R ]] of [[S1 ]]× · · · × [[Sm ]].

Given this, we define interpretations [[ t ]] for terms t and [[ϕ ]] for formulas
ϕ, as follows.

Write FV (t) for the set of variables which occur in t, and FV (ϕ) for the set
of free variables in ϕ.

We put [[FV (t) ]] = [[S1 ]]× · · · × [[Sn ]] if FV (t) = {xS1
1 , . . . , xSnn }; the same

for [[FV (ϕ) ]]. Note: in the products [[FV (t) ]] and [[FV (ϕ) ]] we take a copy
of [[S ]] for every variable of sort S! Let me further emphasize that the empty
product is 1, so if FV (t) (or FV (ϕ)) is ∅, [[FV (t) ]] (or [[FV (ϕ) ]]) is the terminal
object of the category.

Definition 4.6 The interpretation of a term t of sort S is a morphism [[ t ]] :
[[FV (t) ]]→ [[S ]] and is defined by the clauses:

i) [[xS ]] is the identity on [[S ]], if xS is a variable of sort S;

ii) Given [[ ti ]] : [[FV (ti) ]] → [[Si ]] for i = 1, . . . , n and a function symbol
(f : S1, . . . , Sn → S) of the language, [[ f(t1, . . . , tn) ]] is the map

[[FV (f(t1, . . . , tn)) ]]
(t̃i|i=1,...,n)

//
∏n
i=1[[Si ]]

[[ f ]]
// [[S ]]

where t̃i is the composite

[[FV (f(t1, . . . , tn)) ]]
πi // [[FV (ti) ]]

[[ ti ]]
// [[Si ]]

in which πi is the appropriate projection, corresponding to the inclusion
FV (ti) ⊆ FV (f(t1, . . . , tn)).

33



Finally, we interpret formulas ϕ as subobjects [[ϕ ]] of [[FV (ϕ) ]]. You should try
to keep in mind the intuition that [[ϕ(x1, . . . , xn) ]] is the “subset”

{(a1, . . . , an) ∈ A1 × · · · ×An |ϕ[a1, . . . , an]}

Definition 4.7 The interpretation [[ϕ ]] as subobject of [[FV (ϕ) ]] is defined as
follows:

i) [[> ]] is the maximal subobject of [[FV (>) ]] = 1;

ii) [[ t = s ]]→ [[FV (t = s) ]] is the equalizer of

[[FV (t = s) ]]
//

//
[[FV (t) ]]
[[FV (s) ]]

[[ t ]]
//

[[ s ]]
// [[T ]]

if t and s are of sort T ; again, the left hand side maps are projections,
corresponding to the inclusions of FV (t) and FV (s) into FV (t = s);

iii) For (R ⊆ S1, . . . , Sm) a relation symbol and terms t1, . . . , tm of sorts
S1, . . . , Sm respectively, let t̄ : [[FV (R(t1, . . . , tm)) ]] →

∏m
i=1[[Si ]] be the

composite map

[[FV (R(t1, . . . , tm)) ]]→
m
∏

i=1

[[FV (ti) ]]
∏m
i=1[[ ti ]]
→

m
∏

i=1

[[Si ]]

Then [[R(t1, . . . , tm) ]]→ [[FV (R(t1, . . . , tm)) ]] is the subobject (t̄)∗([[R ]]),
defined by pullback along t̄.

iv) if [[ϕ ]]→ [[FV (ϕ) ]] and [[ψ ]]→ [[FV (ψ) ]] are given and

[[FV (ϕ ∧ ψ) ]]
π1 //

π2
''OOOOOOOOOOO

[[FV (ϕ) ]]

[[FV (ψ) ]]

are again the suitable projections, then [[ (ϕ ∧ ψ) ]] → [[FV (ϕ ∧ ψ) ]] is the
greatest lower bound in Sub([[FV (ϕ ∧ ψ) ]]) of π∗

1([[ϕ ]]) and π∗
2([[ψ ]]);

v) if [[ϕ ]] → [[FV (ϕ) ]] is given and π : [[FV (ϕ) ]] → [[FV (∃xϕ) ]] the projec-
tion, let [[FV ′(ϕ) ]] be the product of the interpretations of the sorts of the
variables in FV (ϕ) ∪ {x} (so [[FV ′(ϕ) ]] = [[FV (ϕ) ]] if x occurs freely in
ϕ; and [[FV ′(ϕ) ]] = [[FV (ϕ) ]]× [[S ]] if x = xS does not occur free in ϕ).
Write π′ : [[FV ′(ϕ) ]]→ [[FV (ϕ) ]].

Now take [[ ∃xϕ ]]→ [[FV (∃xϕ) ]] to be the image of the composition:

(π′)∗([[ϕ ]])→ [[FV ′(ϕ) ]]
ππ′

→ [[FV (∃xϕ) ]]

34



We have now given an interpretation of formulas. Basically, a formula ϕ is
true under this interpretation if [[ϕ ]] → [[FV (ϕ) ]] is the maximal subobject;
but since we formulate the logic in terms of sequents we rather define when a
sequent is true under the interpretation.

Definition 4.8 A labelled sequent is an expression of the form ψ `σ ϕ or `σ ϕ
where ψ and ϕ are the formulas of the sequent (but ψ may be absent), and σ
is a finite set of variables which includes all the variables which occur free in a
formula of the sequent.

Let [[σ ]] = [[S1 ]] × · · · × [[Sn ]] if σ = {xS1
1 , . . . , xSnn }; there are projections

[[σ ]]
πϕ
→ [[FV (ϕ) ]] and (in case ψ is there) [[σ ]]

πψ
→ [[FV (ψ) ]]; we say that the

sequent ψ `σ ϕ is true for the interpretation if (πψ)∗([[ψ ]]) ≤ (πϕ)∗([[ϕ ]]) as
subobjects of [[σ ]], and `σ ϕ is true if (πϕ)∗([[ϕ ]]) is the maximal subobject of
[[σ ]].

We also say that ϕ is true if `FV(ϕ) ϕ is true.

Exercise 70 Show that the sequent ` ∃xS(xS = xS) is true if and only if the
unique map [[S ]]→ 1 is a regular epimorphism. What about the sequent `S >?

We now turn to the logic. Instead of giving deduction rules and axioms, I
formulate a list of closure conditions which determine what sets of labelled
sequents will be called a theory. I write `x for `{x} and ` for `∅.

Definition 4.9 Given a language, a set T of labelled sequents of that language
is called a theory iff the following conditions hold (the use of brackets around ψ
caters in a, I hope, self-explanatory way for the case distiction as to whether ψ
is or is not present):

i) ` > is in T ;
`x x = x is in T for every variable x;
x = y `{x,y} y = x is in T for variables x, y of the same sort;
x = y ∧ y = z `{x,y,z} x = z is in T for variables x, y, z of the same sort;
R(x1, . . . , xm) `{x1,...,xm} R(x1, . . . , xm) is in T;

ii) if (ψ) `σ ϕ is in T then (ψ) `τ ϕ is in T whenever σ ⊆ τ ;

iii) if (ψ) `σ ϕ is in T and FV (χ) ⊆ σ then (ψ∧)χ `σ ϕ and χ(∧ψ) `σ ϕ are
in T ;

iv) if (ψ) `σ ϕ and (ψ) `σ χ are in T then (ψ) `σ ϕ ∧ χ and (ψ) `σ χ ∧ ϕ
are in T ;

v) if ψ `σ ϕ is in T and x is a variable not occurring in ϕ then ∃xψ `σ\{x} ϕ
is in T ;

vi) if x occurs in ϕ and (ψ) `σ ϕ[t/x] is in T then (ψ) `σ ∃xϕ is in T ;
if x does not occur in ϕ and (ψ) `σ ϕ and (ψ) `σ ∃x(x = x) are in T ,
then (ψ) `σ ∃xϕ is in T ;

35



vii) if (ψ) `σ ϕ is in T then (ψ[t/x]) `σ\{x}∪FV (t) ϕ[t/x] is in T ;

viii) if (ψ) `σ ϕ[t/x] and (ψ) `σ t = s are in T then (ψ) `σ ϕ[s/x] is in T ;

ix ) if (ψ) `σ ϕ and ϕ `σ χ are in T then (ψ) `σ χ is in T

Exercise 71 Show that the sequent ϕ `FV (ϕ) ϕ is in every theory, for every
formula ϕ of the language.

As said, the definition of a theory is a list of closure conditions: every item
can be seen as a rule, and a theory is a set of sequents closed under every rule.
Therefore, the intersection of any collection of theories is again a theory, and it
makes sense to speak, given a set of sequents S, of the theory Cn(S) generated
by S:

Cn(S) =
⋂

{T |T is a theory and S ⊆ T}

We have the following theorem:

Theorem 4.10 (Soundness theorem) Suppose T = Cn(S) and all sequents
of S are true under the interpretation in the category C. Then all sequents of T
are true under that interpretation.

Before embarking on the proof, first a lemma:

Lemma 4.11 Suppose t is substitutable for x in ϕ. There is an obvious map

[t] : [[FV (ϕ) \ {x} ∪ FV (t) ]] = [[FV (ϕ[t/x]) ]]→ [[FV (ϕ) ]]

induced by [[ t ]]; the components of [t] are projections except for the factor of
[[ϕ ]] corresponding to x, where it is

[[FV (ϕ[t/x]) ]] → [[FV (t) ]]
[[ t ]]
→ [[ {x} ]]

There is a pullback diagram:

[[ϕ[t/x] ]]

��

// [[FV (ϕ[t/x]) ]]

[t]

��

[[ϕ ]] // [[FV (ϕ) ]]

Exercise 72 Prove this lemma [not trivial. Use induction on ϕ and proposi-
tion 4.4].

Proof. (of theorem 4.10) The proof checks that for every rule in the list of
definition 4.9, if the premiss is true then the conclusion is true; in other words,
that the set of true sequents is a theory.
i) ` > is true by the definition [[> ]] = 1;
[[xS = xS ]] is the equalizer of two maps which are both the identity on [[S ]],

36



so isomorphic to [[S ]]. For x = y ∧ y = z `{x,y,z} x = z, just observe that
E12 ∧ E23 ≤ E13 if Eij is the equalizer of the two projections πi, πj : [[S ]] ×
[[S ]]× [[S ]]→ [[S ]].
ii) This is because if σ ⊆ τ and ρ : [[ τ ]]→ [[σ ]] is the projection, ρ∗ is monotone.
iii)-iv) By the interpretation of ∧ as the greatest lower bound of two subobjects,
and proposition 4.4.
v) Let

[[σ ]]

µ

��

π // [[σ \ {x} ]]

ν

��

ρ
// [[FV (ϕ) ]]

[[FV (ψ) ]] [[FV (∃xψ) ]]

the projections. Since by assumption µ∗([[ψ ]]) ≤ (ρπ)∗([[ϕ ]]) there is a commu-
tative diagram

µ∗([[ψ ]])

��

// [[σ ]]

π

��

ρ∗([[ϕ ]]) // [[σ \ {x} ]]

By proposition 4.4, ν∗([[ ∃xψ ]]) is the image of the map µ∗([[ψ ]]) → [[σ \ {x} ]],
so ν∗([[ψ ]]) ≤ ρ∗([[ϕ ]]) in Sub([[σ \ {x} ]]).
vi) Suppose x occurs free in ϕ. Consider the commutative diagram

[[σ ]]

π

wwoooooooooooo

π′

��

π′′

++WWWWWWWWWWWWWWWWWWWWWWWWW

[[FV (ψ) ]] [[FV (ϕ[t/x]) ]]
[t]

// [[FV (ϕ) ]]
ρ

// [[FV (ϕ) \ {x} ]]

with [t] as in lemma 4.11 and the other maps projections. Now [[ϕ ]] ≤ ρ∗([[ ∃xϕ ]])

because [[ϕ ]] → [[FV (ϕ) ]]
ρ
→ [[FV (ϕ) \ {x} ]] factors through [[ ∃xϕ ]] by defini-

tion; so if π∗([[ψ ]]) ≤ π′∗([[ϕ[t/x] ]]) then with lemma 4.11,

π∗([[ψ ]]) ≤ π′∗([[ϕ[t/x] ]]) = π′∗[t]∗([[ϕ ]]) ≤ π′∗[t]∗ρ∗([[ ∃xϕ ]]) = π′′∗([[ ∃xϕ ]])

in Sub([[σ ]]) and we are done.
The case of x not occurring in ϕ is left to you.

vii) Direct application of lemma 4.11
viii-ix) Left to you.

Exercise 73 Fill in the “left to you” gaps in the proof.

4.3 The language L(C) and theory T (C) associated to a
regular category C

Given a regular category C (which, to be precise, must be assumed to be small),
we associate to C the language which has a sort C for every object of C, and a
function symbol (f : C → D) for every arrow f : C → D of C.

37



This language is called L(C) and it has trivially an interpretation in C.
The theory T (C) is the set of sequents of L(C) which are true for this inter-

pretation.
One of the points of categorical logic is now, that categorical statements

about objects and arrows in C can be reformulated as statements about the
truth of certain sequents in L(C). You should read the relevant sequents as
expressing that we can “do as if the category were Set”.

Examples

a) C is a terminal object of C if and only if the sequents `x,y x = y and
` ∃x(x = x) are valid, where x, y variables of sort C;

b) the arrow f : A → B is mono in C if and only if the sequent f(x) =
f(y) `x,y x = y is true;

c) The square

A

g

��

f
// B

h

��

C
d

// D

is a pullback square in C if and only if the sequents

h(xB) = d(yC) `x,y ∃z
A(f(z) = x ∧ g(z) = y)

and
f(zA) = f(z′A) ∧ g(zA) = g(z′A) `z,z′ z = z′

are true;

d) the fact that f : A → B is epi can not similarly be expressed! But: f is
regular epi if and only if

`xB ∃y
A(f(y) = x)

is true;

e) A
f

// B
g

//

h
// C is an equalizer diagram iff f is mono (see b) and the

sequent
g(xB) = h(xB) `xB ∃y

A(f(y) = x)

is true.

Exercise 74 Check (a number of) these statements. Give the sequent(s) cor-

responding to the statement that

A

g

��

f
// B

C

is a product diagram.

38



Exercise 75 Check that the formulas ∃xϕ and ∃x(x = x ∧ ϕ) are equivalent,
that is, every theory contains the sequents

∃xϕ `σ ∃x(x = x ∧ ϕ)

and
∃x(x = x ∧ ϕ) `σ ∃xϕ

for any σ containing the free variables of ∃xϕ.

Exercise 76 Suppose

A

g

��

f
// B

h

��

C
d

// D

is a pullback diagram in a regular category C, with h regular epi. Use regular
logic to show: if f is mono, then so is d. Give also a categorical proof of this
fact, and compare the two proofs.

Exercise 77 Can you express: A
f
→ B is regular mono? [Hint: don’t waste

too much time in trying!]

4.4 The category C(T ) associated to a theory T : Com-
pleteness Theorem

The counterpart of Theorem 4.10 (the Soundness Theorem) is of course a com-
pleteness theorem: suppose that the sequent (ψ) `σ ϕ is true in every inter-
pretation which makes all sequents from T true. We want to conclude that
(ψ) `σ ϕ is in T .

To do this, we build a category C(T ), a so-called syntactic category, which
will be regular, and which allows an interpretation [[ · ]] such that exactly the
sequents in T will be true for [[ · ]].

The construction of C(T ) is as follows. Objects are formulas of the language
L, up to renaming of free variables; so if ϕ is a formula in distinct free variables
x1, . . . , xn and v1, . . . , vn are distinct variables of matching sorts, then ϕ and
ϕ(v1/x1, . . . , vn/xn) are the same object. Because of this stipulation, if I define
morphisms between ϕ(~x) and ψ(~y), I can always assume that the collections of
variables ~x and ~y are disjoint (even when treating a morphism from ϕ to itself,

I take ϕ and a renaming ϕ(~x′)). Given ϕ(~x) and ψ(~y) (where ~x = (x1, . . . , xn),
~y = (y1, . . . , ym)), a functional relation from ϕ to ψ is a formula χ(~x, ~y) such
that the sequents

χ(~x, ~y) `{x1,...,xn,y1,...,ym} ϕ(~x) ∧ ψ(~y)

χ(~x, ~y) ∧ χ(~x, ~y′) `{x1,...,xn,y1,...,ym,y′1,...,y
′
m} y1 = y′1 ∧ · · · ∧ ym = y′m

ϕ(~x) `{x1,...,xn} ∃y1 · · · ∃ym χ(~x, ~y)

39



are all in T . If FV (ψ) = ∅, the second requirement is taken to be vacuous, i.e.
trivially fulfilled.

A morphism from ϕ to ψ is an equivalence class [χ] of functional relations
from ϕ to ψ, where χ1 and χ2 are equivalent iff the sequents

χ1(~x, ~y) `{x1,...,xn,y1,...,ym} χ2(~x, ~y)
χ2(~x, ~y) `{x1,...,xn,y1,...,ym} χ1(~x, ~y)

are in T (in fact, given that χ1 and χ2 are functional relations, one of these
sequents is in T iff the other is).

Composition of morphisms is defined as follows: if χ1(~x, ~y) represents a
morphism ϕ→ ψ and χ2(~y, ~z) a morphism ψ → ω, the composition [χ2] ◦ [χ1] :
ϕ→ ω is represented by the functional relation

χ21 ≡ ∃y1 · · · ∃ym (χ1(~x, ~y) ∧ χ2(~y, ~z))

Exercise 78 Show:

a) χ21 is a functional relation from ϕ to ω;

b) the class of χ21 does not depend on the choice of representatives χ1 and
χ2;

c) composition is associative.

The identity arrow from ϕ(~x) to itself (i.e. to ϕ(~x′), given our renaming con-
vention), is represented by the formula

ϕ(~x) ∧ x1 = x′1 ∧ · · · ∧ xn = x′n

Exercise 79 Show that this definition is correct: that this formula is a func-
tional relation, and defines an identity arrow.

We have defined the category C(T ).

Theorem 4.12 C(T ) is a regular category.

Proof. The formula > is a terminal object in C(T ): for every formula ϕ, ϕ
itself represents the unique morphism ϕ → >. Given formulas ϕ(~x) and ψ(~y),

the formula ϕ ∧ ψ is a product, with projections ϕ ∧ ψ → ϕ(~x′) (renaming!)
represented by the formula

ϕ(~x) ∧ ψ(~y) ∧ x1 = x′1 ∧ · · · ∧ xn = x′n

and ϕ ∧ ψ to ψ(~y′) similarly defined.
If χ1(~x, ~y) and χ2(~x, ~y) represent morphisms ϕ(~x) → ψ(~y) let ω(~x) be the

formula
∃y1 · · · ∃ym(χ1(~x, ~y) ∧ χ2(~x, ~y))

40



Then ω(~x) ∧ x1 = x′1 ∧ · · · ∧ xn = x′n represents a morphism ω → ϕ(~x′) which
is the equalizer of [χ1] and [χ2].

This takes care of finite limits.
Now if [χ1(~x, ~y)] : ϕ(~x)→ ψ1(~y) and [χ2(~x, ~y)] : ϕ(~x)→ ψ2(~y), then you can

check that [χ2] coequalizes the kernel pair of [χ1] if and only if the sequent

∃~y (χ1(~x, ~y) ∧ χ1(~x′, ~y)) `{~x,~x′} ∃~v(χ2(~x,~v) ∧ χ2(~x′, ~v))

is in T . This is the case if and only if [χ2] factors through the obvious map from
ϕ to ∃~xχ1(~x, ~y) which is therefore the image of [χ1], i.e. the coequalizer of its
kernel pair.

We see at once that [χ] : ϕ→ ψ is regular epi iff the sequent

ψ(~y) `{~y} ∃~xχ(~x, ~y)

is in T ; using the description of finite limits one easily checks that these are
stable under pullback

We define [[ · ]], the standard interpretation of L in C(T ), as follows:

• the interpretation [[S ]] of a sort S is the formula x = x, where x is a
variable of sort S;

• if (f : S1, . . . , Sn → S) is a function symbol of L, [[ f ]] is the functional
relation

f(x1, . . . , xn) = x

• if (R ⊆ S1, . . . , Sn) is a relation symbol of L, the subobject [[R ]] of [[S1 ]]×
· · · × [[Sn ]] is represented by the mono

R(x1, . . . , xn) ∧ x1 = x′1 ∧ · · · ∧ xn = x′n

I now state the important facts about C(T ) and [[ · ]] as nontrivial exercises. Here
we say that, given the theory T , formulas ϕ and ψ (in the same free variables
x1, . . . , xn are equivalent in T if the sequents ϕ `{x1,...,xn} ψ and ψ `{x1,...,xn} ϕ
are both in T .

Exercise 80 If t is a term of sort S in L, in variables xS1
1 , . . . , xSnn , the func-

tional relation from [[S1 ]]×· · ·×[[Sn ]] ≡ x1 = x1∧· · ·∧xn = xn, to [[S ]] ≡ x = x,
representing [[ t ]], is equivalent in T to the formula

t(x1, . . . , xn) = x

Exercise 81 If ϕ is a formula of L in free variables xS1
1 , . . . , xSnn , the subobject

[[ϕ ]]→ [[S1 ]]×· · ·×[[Sn ]] is represented by a functional relation χ from a formula
ψ to x1 = x1 ∧ · · · ∧ xn = xn, such that:

a) ψ is a formula in variables x′1, . . . , x
′
n and ψ(x′1, . . . , x

′
n) is equivalent in T

to ϕ(x′1, . . . , x
′
n);

41



b) χ(x′1, . . . , x
′
n, x1, . . . , xn) is equivalent in T to

ϕ(x′1, . . . , x
′
n) ∧ x′1 = x1 ∧ · · · ∧ x

′
n = xn

Exercise 82 The sequent (ψ) `σ ϕ is true in the interpretation [[ · ]] if and only
if (ψ) `σ ϕ is in T .

Exercise 83 Let E be a regular category and T a theory. Call a functor between
regular categories regular if it preserves finite limits and regular epis.

Then every regular functor: C(T )→ E gives rise to an interpretation of the
language of T in E , which makes all sequents in T true.

Conversely, given such an interpretation of T in E , there is, up to natural
isomorphism, a unique regular functor: C(T ) → E with the property that it
maps the standard interpretation of T in C(T ) to the given one in E .

Exercise 84 This exercise constructs the “free regular category on a given
category C”. Given C, which is not assumed to be regular (or to have finite
limits), let L be the language of C as before: it has a sort C for every object C
of C, and a function symbol (f : C → D) for every arrow of C. Let T be the
theory generated by the following set S of sequents: for every identity arrow
i : C → C in C, the sequent `x x = i(x) is in S; and for every composition
f = gh of arrows in C, the sequent `x f(x) = g(h(x)) is in S.

a) Show that interpretations of L in a regular category E which make all
sequents of S true, correspond bijectively to functors from C to E .

b) Show that there is a functor η : C → C(T ) such that for every functor
F : C → E with E regular, there is, up to isomorphism, a unique regular
functor F̃ : C(T )→ E such that F̃ η = F . C(T ) is the free regular category
on C.

c) Show that if, in this situation, C has finite limits, η does not preserve them!
How would one construct the “free regular category on C, preserving the
limits which exist in C”?

4.5 Example of a regular category

In this section, I treat an example of a type of regular categories which are
important in categorical logic. They are categories of Ω-valued sets for some
frame Ω. Let’s define some things.

Definition 4.13 A frame Ω is a partially ordered set which has suprema (least
upper bounds)

∨

B of all subsets B, and infima (meets)
∧

A for finite subsets A
(so, there is a top element > and every pair of elements x, y has a meet x ∧ y),
and moreover, ∧ distributes over

∨

, that is,

x ∧
∨

B =
∨

{x ∧ b|b ∈ B}

for x ∈ Ω, B ⊆ Ω.

42



Given a frame Ω we define the category CΩ as follows:

Objects are functions X
EX→ Ω, X a set;

Maps from (X,EX) to (Y,EY ) are functions X
f
→ Y satisfying the requirement

that EX(x) ≤ EY (f(x)) for all x ∈ X .
It is easily seen that the identity function satisfies this requirement, and if two
composable functions satisfy it, their composition does; so we have a category.

Proposition 4.14 CΩ is a regular category.

Proof. Let {∗} be any one-element set, together with the function which sends
∗ to the top element of Ω. Then {∗} → Ω is a terminal object of CΩ.

Given (X,EX) and (Y,EY ), a product of the two is the object (X×Y,EX×Y )
where EX×Y (x, y) is defined as EX(x) ∧ EY (y).

Given two arrows f, g : (X,EX )→ (Y,EY ) their equalizer is (X ′, EX′) where
X ′ ⊆ X is {x ∈ X |f(x) = g(x)} and EX′ is the restriction of EX to X ′.

This is easily checked, and CΩ is a finitely complete category.
An arrow f : (X,EX) → (Y,EY ) is regular epi if and only if the function f

is surjective and for all y ∈ Y , EY (y) =
∨

{EX(x) | f(x) = y}.
For suppose f is such, and g : (X,EX ) → (Z,EZ) coequalizes the kernel

pair of f . Then g(x) = g(x′) whenever f(x) = f(x′), and so for all y ∈ Y , since
f(x) = y implies EX (x) ≤ EZ(g(x)), we have

EY (y) =
∨

{EX(x)|f(x) = y} ≤ EZ(g(x))

so there is a unique map h : (Y,EY ) → (Z,EZ) such that g = hf ; that is f is
the coequalizer of its kernel pair.

The proof of the converse is left to you.
Finally we must show that regular epis are stable under pullback. This is

an exercise.

Exercise 85 Show that the pullback of

X

f

��

Y g
// Z

(I suppress reference to

the EX etc.) is (up to isomorphism) the set {(x, y)|f(x) = g(y)}, with E(x, y) =
EX(x) ∧ EY (y); and then, use the distributivity of Ω to show that regular epis
are stable under pullback.

Exercise 86 Fill in the other gap in the proof: if f : (X,EX) → (Y,EY ) is a
regular epi, then f satisfies the condition given in the proof.

Exercise 87 Given (X,EX)
f
→ (Y,EY ), give the interpretation of the formula

∃x(f(x) = y), as subobject of (Y,EY ).

43



Exercise 88 Characterize those objects (X,EX) for which the unique map to
the terminal object is a regular epimorphism.

Exercise 89 Give a categorical proof of the statement: if f is the coequalizer
of something, it is the coequalizer of its kernel pair.

Exercise 90 Characterize the regular monos in CΩ.

Exercise 91 For every element u of Ω, let 1u be the object of CΩ which is the
function from a one-element set into Ω, with value u. Prove that every object
of CΩ is a coproduct of objects of form 1u.

44



5 Adjunctions

The following kind of problem occurs quite regularly: suppose we have a functor

C
G
→ D and for a given object D of D, we look for an object G(C) which “best

approximates”D, in the sense that there is a map D
η
→ G(C) with the property

that any other map D
g
→ G(C ′) factors uniquely as G(f)η for f : C → C ′ in C.

We have seen, that if G is the inclusion of Abgp into Grp, the abelianization
of a group is an example. Another example is the Čech-Stone compactification in
topology: for a completely regular topological spaceX one constructs a compact
Hausdorff space βX out of it, and a map X → βX , such that any continuous
map from X to a compact Hausdorff space factors uniquely through this map.

Of course, what we described here is a sort of “right-sided” approximation;
the reader can define for himself what the notion for a left-sided approxiamtion
would be.

The categorical description of this kind of phenomena goes via the concept
of adjunction, which this chapter is about.

5.1 Adjoint functors

Let C
G

// D
Foo be a pair of functors between categories C and D.

We say that F is left adjoint to G, or G is right adjoint to F , notation:
F a G, if there is a natural bijection:

C(FD,C)
mD,C

// D(D,GC)

for each pair of objects C ∈ C0, D ∈ D0. Two maps f : FD → C in C and
g : D → GC in D which correspond to each other under this correspondence
are called transposes of each other.

The naturality means that, given f : D → D′, g : C ′ → C in D and C
respectively, the diagram

C(FD,C)
mD,C

// D(D,GC)

C(FD′, C ′)

C(Ff,g)

OO

mD′,C′

// D(D′, GC ′)

D(f,Gg)

OO

commutes in Set. Remind yourself that given α : FD′ → C ′, C(Ff, g)(α) :
FD → C is the composite

FD
Ff

// FD′ α // C ′
g

// C

Such a family m = (mD,C |D ∈ D0, C ∈ C0) is then completely determined by
the values it takes on identities; i.e. the values

mD,FD(idFD) : D → GFD

45



For, given α : FD → C, since α = C(idFD, α)(idFD),

mD,C(α) = mD,C(C(idFD , α)(idFD)) =
D(idD , G(α))(mD,FD(idFD))

which is the composite

D
mD,FD(idFD)

// GFD
G(α)

// G(C)

The standard notation for mD,FD(idFD) is ηD : D → GF (D).

Exercise 92 Show that (ηD : D ∈ D0) is a natural transformation:

idD ⇒ GF

By the same reasoning, the natural family (m−1
D,C |D ∈ D0, C ∈ C0) is completely

determined by its actions on identities

m−1
GC,C(idGC) : FGC → C

Again, the family (m−1
GC,C(idGC)|C ∈ C0) is a natural transformation: FG ⇒

idC . We denote its components by εC and this is also standard notation.
We have that m−1

D,C(β : D → GC) is the composite

FD
Fβ

// FGC
εC // C

Now making use of the fact that mD,C and m−1
D,C are each others inverse we get

that for all α : FD → C and β : D → GC the diagrams

D

ηD

��

β
// GC

GFD
GF (β)

// GFG(C)

G(εC )

OO

and

FD
α //

F (ηD)

��

C

FGFD
FG(α)

// FGC

εC

OO

commute; applying this to the identities on FD and GC we find that we have
commuting diagrams of natural transformations:

G
η?G

+3

idG
�&

EE
EE

EE
EE

EE
EE

EE
EE

GFG

G◦ε

��

G

F
F◦η

+3

idF
�&

EE
EE

EE
EE

EE
EE

EE
EE

FGF

ε?F

��

F

Here η ? G denotes (ηGC |C ∈ C0) and G ◦ ε denotes (G(εC)|C ∈ C0).

Conversely, given C
G

// D
Foo with natural transformations η : idD ⇒ GF

and ε : FG ⇒ idC which satisfy the above triangle equalities, we have that
F a G.

The tuple (F,G, ε, η) is called an adjunction. η is the unit of the adjunction,
ε the counit.

46



Exercise 93 Prove the last statement, i.e. given C
G

// D
Foo , η : idD ⇒ GF

and ε : FG ⇒ idC satisfying (G ◦ ε) · (η ? G) = idG and (ε ? F ) · (F ◦ η) = idF ,
we have F a G.

Exercise 94 Given C
G1

// D
F1oo

G2

// E
F2oo , if F1 a G1 and F2 a G2 then F1F2 a

G2G1.

Examples. The world is full of examples of adjoint functors. We have met
several:

a) Consider the forgetful functor U : Grp → Set and the free functor F :
Set→ Grp. Given a function from a set A to a group G (which is an arrow
A → U(G) in Set) we can uniquely extend it to a group homomorphism
from (Ã, ?) to G (see example e) of 1.1), i.e. an arrow F (A)→ G in Grp,
and conversely. This is natural in A and G, so F a U ;

b) The functor Dgrph→ Cat given in example f) of 1.1 is left adjoint to the
forgetful functor Cat→ Dgrph;

c) Given functors P
G

// Q
Foo between two preorders P and Q, F a G if and

only if we have the equivalence

y ≤ G(x)⇔ F (y) ≤ x

for x ∈ P, y ∈ Q; if and only if we have FG(x) ≤ x and y ≤ GF (y) for all
x, y;

d) In example m) of 1.1 we did “abelianization” of a group G. We made
use of the fact that any homomorphism G → H with H abelian, factors
uniquely through G/[G,G], giving a natural 1-1 correspondence

Grp(G, I(H))
∼
→ Abgp(G/[G,G], H)

where I : Abgp → Grp is the inclusion. So abelianization is left adjoint
to the inclusion functor of abelian groups into groups;

e) The free monoid F (A) on a set A is just the set of strings on the alphabet
A. F : Set → Mon is a functor left adjoint to the forgetful functor from
Mon to Set;

f) Given a set X we have seen (example g) of 2.2) the product functor (−)×
X : Set→ Set, assigning the product Y ×X to a set Y .

Since there is a natural bijection between functions Y × X → Z and
functions Y → ZX , the functor (−)X : Set → Set is right adjoint to
(−)×X ;

47



g) Example e) of 2.2 gives two functors F,G : Set → Cat. F and G are

respectively left and right adjoint to the functor Cat
Ob
→ Set which assigns

to a (small) category its set of objects (to be precise, for this example to
work we have to take for Cat the category of small categories), and to a
functor its action on objects.

h) Given a regular category C we saw in 4.1 that every arrow f : X → Y can
be factored as a regular epi followed by a monomorphism. In Exercise 69
you were asked to show that there is a function ∃f : SUB(X) → Sub(Y )
such that the equivalence ∃f (M) ≤ N ⇔M ≤ f∗(N) holds, for arbitrary
subobjects M and N of X and Y , respectively.

But this just means thet ∃f a f∗

We can also express this logically: in the logic developed in chapter 4, for
any formulas M(x) and N(y), the sequents

∃x(f(x) = y ∧M(x)) `y N(y)

and
M(x) `x N(f(x))

are equivalent.

One of the slogans of categorical logic is therefore, that “existential quan-
tification is left adjoint to substitution”.

i) Let C be a category with finite products; for C ∈ C0 consider the slice
category C/C. There is a functor C∗ : C → C/C which assigns to D the

object C ×D
πC→ C of C/C, and to maps D

f
→ D′ the map idC × f .

C∗ has a left adjoint ΣC which takes the domain: ΣC(D → C) = D.

j) Let P : Setop → Set be the functor which takes the powerset on objects,

and for X
f
→ Y , P (f) : P (Y ) → P (X) gives for each subset B of Y its

inverse image under f .

Now P might as well be regarded as a functor Set → Setop; let’s write P̄
for that functor. Since there is a natural bijection:

Set(X,P (Y ))
∼
→ Set(Y, P (X)) = Setop(P̄ (X), Y )

we have an adjunction P̄ a P .

Exercise 95 A general converse to the last example. Suppose that F : Setop →
Set is a functor, such that for the corresponding functor F̄ : Set → Setop we
have that F̄ a F . Then there is a set A such that F is naturally isomorphic to
Set(−, A).

48



Exercise 96 Suppose that C
F
← D is a functor and that for each object C of C

there is an object GC of D and an arrow εC : FGC → C with the property that

for every object D of D and any map FD
f
→ C, there is a unique f̃ : D → GC

such that

FD

F f̃ ##G
GG

GG
GG

GG

f
// C

FGC

εC

<<yyyyyyyy

commutes.
Prove that G : C0 → D0 extends to a functor G : C → D which is right

adjoint to F , and that (εC : FGC → C|C ∈ C0) is the counit of the adjunction.
Construct also the unit of the adjunction.

Exercise 97 Given C
G
→ D, for each object D of D we let (D↓G) denote the

category which has as objects pairs (C, g) where C is an object in C and g :
D → GC is an arrow in D. An arrow (C, g) → (C ′, g′) in (D↓G) is an arrow
f : C → C ′ in C which makes

D
g

}}{{
{{

{{
{{ g′

!!D
DD

DD
DD

D

GC
Gf

// GC ′

commute.
Show that G has a left adjoint if and only if for each D, the category (D↓G)

has an initial object.

Exercise 98 (Uniqueness of adjoints) Any two left (or right) adjoints of a given
functor are isomorphic as objects of the appropriate functor category.

Exercise 99 D → 1 has a right adjoint iff D has a terminal object, and a left
adjoint iff D has an initial object.

Exercise 100 Suppose D has both an initial and a terminal object; denote by
L the functor D → D which sends everything to the initial, and by R the one
which sends everything to the terminal object. L a R.

Exercise 101 Let F a G with counit ε : FG ⇒ id. Show that ε is a natural
isomorphism if and only if G is full and faithful; and G is faithful if and only if
all components of ε are epimorphisms.

Exercise 102 Suppose that F : C → D is an equivalence of categories with
pseudo inverse G : D → C. Show that both F a G and G a F hold.

49



5.2 Expressing (co)completeness by existence of adjoints;
preservation of (co)limits by adjoint functors

Given categories C and D, we defined for every functor F : C → D its limit
(or limiting cone), if it existed, as a pair (D,µ) with µ : ∆D ⇒ F , and (D,µ)
terminal in the category of cones for F .

Any other natural transformation µ′ : ∆D′ ⇒ F factors uniquely through
(D,µ) via an arrow D′ → D in D and conversely, every arrow D′ → D gives
rise to a natural transformation µ′ : ∆D′ ⇒ F .

So there is a 1-1 correspondence between

D(D′, D) and DC(∆D′ , F )

which is natural in D′.
Since every arrowD′ → D′′ in D gives a natural transformation ∆D′ ⇒ ∆D′′

(example i) of 2.2), there is a functor ∆(−) : D → DC .
The above equation now means that:

Proposition 5.1 D has all limits of type C (i.e. every functor C
F
→ D has a

limiting cone in D) if and only if ∆(−) has a right adjoint.

Exercise 103 Give an exact proof of this proposition.

Exercise 104 Use duality to deduce the dual of the proposition: D has all
colimits of type C if and only if ∆(−) : D → DC has a left adjoint.

A very important aspect of adjoint functors is their behaviour with respect to
limits and colimits.

Theorem 5.2 Let C
G

// D
Foo such that F a G. Then:

a) G preserves all limits which exist in C;

b) F preserves all colimits which exist in D.

Proof. Suppose M : E → C has a limiting cone (C, µ) in C. Now a cone (D, ν)

for GM is a natural family D
νE→ GM(E), i.e. such that

D
νE //

νE′

##G
GGGGGGGG GM(E)

GM(e)

��

GM(E′)

commutes for every E
e
→ E′ in E .

50



This transposes under the adjunction to a family (FD
ν̃E→ME|E ∈ E0) and

the naturality requirement implies that

FD
ν̃E //

ν̃E′
##G

GGGGGGG ME

M(e)

��

ME′

commutes in C, in other words, that (FD, ν) is a cone for M in C. There is,
therefore, a unique map of cones from (FD, ν̃) to (C, µ).

Transposing back again, we get a unique map of cones (D, ν)→ (GC,G◦µ).
That is to say that (GC,G ◦µ) is terminal in Cone(GM), so a limiting cone for
GM , which was to be proved.

The argument for the other statement is dual.

Exercise 105 Given C
G

// D
Foo , F a G and M : E → C. Show that the

functor Cone(M)→ Cone(GM) induced by G has a left adjoint.

From the theorem on preservation of (co)limits by adjoint functors one can often
conclude that certain functors cannot have a right or a left adjoint.

Examples

a) The forgetful functor Mon → Set does not preserve epis, as we have seen
in 1.2. In chapter 3 we’ve seen that f is epi iff is a pushout; since left
adjoints preserve identities and pushouts, they preserve epis; therefore the
forgetful functor Mon→ Set does not have a right adjoint;

b) The functor (−) × X : Set → Set does not preserve the terminal object
unless X is itself terminal in Set; therefore, it does not have a left adjoint
for non-terminal X .

c) The forgetful functor Pos → Set has a left adjoint, but it cannot have a
right adjoint: it preserves all coproducts, including the initial object, but
not all coequalizers.

Exercise 106 Prove the last example. Hint: think of the coequalizer of the
following two maps Q→ R: one is the inclusion, the other is the constant zero
map.

Another use of the theorem has to do with the computation of limits. Many
categories, as we have seen, have a forgetful functor to Set which has a left
adjoint. So the forgetful functor preserves limits, and since these can easily be
computed in Set, one already knows the “underlying set” of the vertex of the
limiting cone one wants to compute.

51



Does a converse to the theorem hold? I.e. given G : C → D which preserves
all limits; does G have a left adjoint? In general no, unless C is sufficiently
complete, and a rather technical condition, the “solution set condition” holds.
The adjoint functor theorem (Freyd) tells that in that case there is a converse:

Definition 5.3 (Solution set condition) G : C → D satisfies the solution
set condition (ssc) for an object D of D, if there is a set XD of objects of C,
such that every arrow D → GC factors as

D //

!!D
DD

DD
DD

D GC

GC ′

G(f)

OO

for some C ′ ∈ XD.

Theorem 5.4 (Adjoint Functor Theorem) Let C be a locally small, com-
plete category and G : C → D a functor. G has a left adjoint if and only if G
preserves all small limits and satisfies the ssc for every object D of D.

Proof. I sketch the proof for the ‘if’ part; convince yourself that the ‘only if’
part is trivial.

For any object D of D let D↓G be the category defined in exercise 96. By
that exercise, we are looking for an initial object of D↓G.

The solution set condition means, that there is a set K0 of objects of D↓G
such that for any object x of D↓G there is an element k ∈ K0 and an arrow
k → x in D↓G.

The fact that C is complete and that G preserves all small limits, entails that
D↓G is complete. Moreover, D↓G is locally small as C is. Now let K be the full
subcategory of D↓G with set of objects K0. Then since D↓G is locally small
and K0 a set, K is small. Take, by completeness of C, a vertex of a limiting
cone for the inclusion: K → D↓G. Call this vertex x0. x0 may not yet be an
initial object of D↓G, but now let M be the full subcategory of D↓G on the
single object x0 (M is a monoid), and let x be a vertex of a limiting cone for
the inclusion M → D↓G. x is the joint equalizer of all arrows f : x0 → x0 in
D↓G, and this will be an initial object in D↓G.

Let me remark that in natural situations, the ssc is always satisfied. But then
in those situations, one generally does not invoke the Adjoint Functor Theorem
in order to conclude to the existence of a left adjoint. The value of this theorem
is theoretical, rather than practical.

For small categories C, the ssc is of course irrelevant. But categories which are
small and complete are complete preorders, as we saw in chapter 3.

For preorders C, D we have: if C is complete, then G : C → D has a left adjoint
if and only if G preserves all limits, that is: greatest lower bounds

∧

B for all
B ⊆ C. For, put

F (d) =
∧

{c|d ≤ G(c)}

52



Then F (d) ≤ c′ implies (since G preserves
∧

)
∧

{G(c)|d ≤ G(c)} ≤ G(c′) which
implies d ≤ G(c′) since d ≤

∧

{G(c)|d ≤ G(c)}; conversely, d ≤ G(c′) implies
c′ ∈ {c|d ≤ G(c)} so F (d) =

∧

{c|d ≤ G(c)} ≤ c′.

53



6 Monads and Algebras

Given an adjunction (F,G, ε, η) : C // D
oo let us look at the functor T =

GF : D → D.
We have a natural transformation η : idD ⇒ T and a natural transformation

µ : T 2 ⇒ T . The components µD are

T 2(D) = GFGFD
G(εFD)
→ GFD = T (D)

Furthermore the equalities

T 3

µT

��

Tµ
// T 2

µ

��

T 2
µ

// T

and

T
ηT

//

idT
  

AA
AA

AA
AA

T 2

µ

��

T
Tη

oo

idT
~~}}

}}
}}

}}

T

hold. Here (Tµ)D = T (µD) : T 3D → TD and (µT )D = µTD : T 3D → TD
(Similar for ηT and Tη).

Exercise 107 Prove these equalities.

A triple (T, µ, η) satisfying these identities is called a monad. Try to see the
formal analogy between the defining equalities for a monad and the axioms for
a monoid: writing m(e, f) for ef in a monoid, and η for the unit element, we
have

m(e,m(g, h)) = m(m(e, g), h) (associativity)
m(η, e) = m(e, η) = e (unit)

Following this one calls µ the multiplication of the monad, and η its unit.

Example. The powerset functor P : Set → Set (example j) of 2.2, with η and
µ indicated there) is a monad (check).

Dually, there is the notion of a comonad (L, δ, ε) on a category C, with equalities

L

δ

��

δ // L2

Lδ

��

L2
δL

// L3

L
idL

~~~~
~~

~~
~~

δ

��

idL

  
@@

@@
@@

@@

L L2
εL

oo
Lε

// L

Given an adjunction (F,G, ε, η), (FG, δ = FηG, ε) is a comonad on C. We call
δ the comultiplication and ε the counit (this is in harmony with the unit-counit
terminology for adjunctions).

Although, in many contexts, comonads and the notions derived from them
are at least as important as monads, the treatment is dual so I concentrate on
monads.

Every adjunction gives rise to a monad; conversely, every monad arises from
an adjunction, but in more than one way. Essentially, there are a maximal and

54



a minimal solution to the problem of finding an adjunction from which a given
monad arises.

Example. A monad on a poset P is a monotone function T : P → P with
the properties x ≤ T (x) and T 2(x) ≤ T (x) for all x ∈ P ; such an operation
is also often called a closure operation on P . Note that T 2 = T because T is
monotone.

In this situation, let Q ⊆ P be the image of T , with the ordering inherited
from P . We have maps r : P → Q and i : Q → P such that ri is the identity
on Q and ir = T : P → P .

For x ∈ P , y ∈ Q we have x ≤ i(y) ⇔ r(x) ≤ y (check); so r a i and the
operation T arises from this adjunction.

6.1 Algebras for a monad

Given a monad (T, η, µ) on a category C, we define the category T -Alg of T -
algebras as follows:

• Objects are pairs (X,h) where X is an object of C and h : T (X) → X is
an arrow in C such that

T 2(X)

µX

��

T (h)
// T (X)

h

��

T (X)
h

// X

and

X
ηX //

idX
""E

EE
EE

EE
EE

T (X)

h

��

X

commute;

• Morphisms: (X,h)→ (Y, k) are morphisms X
f
→ Y in C for which

T (X)

h

��

T (f)
// T (Y )

k

��

X
f

// Y

commutes.

Theorem 6.1 There is an adjunction between T -Alg and C which brings about
the given monad T .

Proof. There is an obvious forgetful functor UT : T -Alg→ C which takes (X,h)
to X . I claim that UT has a left adjoint F T :

F T assigns to an object X the T -algebra T 2(X)
µX
→ T (X); to X

f
→ Y

the map T (f); this is an algebra map because of the naturality of µ. That

T 2(X)
µX
→ T (X) is an algebra follows from the defining axioms for a monad T .

55



Now given any arrow g : X → UT (Y, h) we let g̃ : (T (X), µX) → (Y, h) be

the arrow T (X)
T (g)
→ T (Y )

h
→ Y . This is a map of algebras since

T 2(X)

µX

��

T 2(g)
// T 2(Y )

µY

��

T (h)
// T (Y )

h

��

T (X)
T (g)

// T (Y )
h

// Y

commutes; the left hand square is the naturality of µ; the right hand square is
because (Y, h) is a T -algebra.

Conversely, given a map of algebras f : (TX, µX)→ (Y, h) we have an arrow

f̄ : X → Y by taking the composite X
ηX
→ TX

f
→ Y .

Now ˜̄f : TX → Y is the composite

TX
T (ηX)
→ T 2X

T (f)
→ TY

h
→ Y

Since f is a T -algebra map, this is

T (X)
T (ηX )
→ T 2(X)

µX
→ T (X)

f
→ Y

which is f by the monad laws.
Conversely, ¯̃g : X → Y is the composite

X
ηX
→ TX

T (g)
→ TY

h
→ Y

By naturality of η and the fact that (Y, h) is a T -algebra, we conclude that
¯̃g = g. So we have a natural 1-1 correspondence

C(X,UT (Y, h)) ' T -Alg(F T (X), (Y, h))

and our adjunction.
Note that the composite UTF T is the functor T , and that the unit η of the

adjunction is the unit of T ; the proof that for the counit ε of F T a UT we have
that

T 2 = UTF TUTF T
UT εFT
→ UTF T = T

is the original multiplication µ, is left to you.

Exercise 108 Complete the proof.

Example. The group monad. Combining the forgetful functor U : Grp → Set
with the left adjoint, the free functor Set → Grp, we get the following monad
on Set:

T (A) is the set of sequences on the alphabet AtA−1 (A−1 is the set {a−1|a ∈
A} of formal inverses of elements of A, as in example e) of 1.1) in which no

56



aa−1 or a−1a occur. The unit A
ηA
→ TA sends a ∈ A to the string 〈a〉. The

multiplication µ : T 2(A)→ T (A) works as follows. Define (−)− : AtA−1 → At
A−1 by a− = a−1 and (a−1)− = a. Define also (−)− on strings by (a1 . . . an)

− =
a−n . . . a

−
1 . Now for an element of TT (A), which is a string on the alphabet

T (A) t T (A)−1, say σ1 . . . σn, we let µA(σ1 . . . σn) be the concatenation of the
strings σ̃1, . . . , σ̃n on the alphabet A t A−1, where σ̃i = σi if σi ∈ T (A), and
σ̃i = (σi)

− if σi ∈ T (A)−1. Of course we still have to remove possible substrings
of the form aa−1 etc.

Now let us look at algebras for the group monad: maps T (A)
h
→ A such that

for a string of strings

α = σ1, . . . , σn = 〈〈s11, . . . , s
k1
1 〉, . . . , 〈s

1
n, . . . , s

kn
n 〉〉

we have that

h(〈hσ1, . . . , hσn〉) = h(〈s11, . . . , s
k1
1 , . . . , s

1
n, . . . , s

kn
n 〉)

and
h(〈a〉) = a for a ∈ A

I claim that this is the same thing as a group structure on A, with multiplication
a · b = h(〈a, b〉).

The unit element is given by h(〈〉); the inverse of a ∈ A is h(〈a−1〉) since

h(〈a, h(〈a−1〉)〉) = h(〈h(〈a〉), h(〈a−1〉)〉) =
h(〈a, a−1〉) = h(〈〉), the unit element

Try to see for yourself how the associativity of the monad and its algebras
transforms into associativity of the group law.

Exercise 109 Finish the proof of the theorem: for the group monad T , there
is an equivalence of categories between T -Alg and Grp.

This situation is very important and has its own name:

Definition 6.2 Given an adjunction C
G

// D
Foo , F a G, there is always a

comparison functor K : C → T -Alg for T = GF , the monad induced by the

adjunction. K sends an object C of C to the T -algebra GFG(C)
G(εC )
→ G(C).

We say that the functor G : C → D is monadic, or by abuse of language (if
G is understood), that C is monadic over D, if K is an equivalence.

Exercise 110 Check that K(C) is a T -algebra. Complete the definition of
K as a functor. Check that in the example of the group monad, the functor
T -Alg→ Grp defined there is a pseudo inverse to the comparison functor K.

In many cases however, the situation is not monadic. Take the forgetful functor
U : Pos → Set. It has a left adjoint F which sends a set X to the discrete
ordering on X (x ≤ y iff x = y). Of course, UF is the identity on Set and the
UF -algebras are just sets. The comparison functor K is the functor U , and this
is not an equivalence.

57



Exercise 111 Why not?

Another example of a monadic situation is of importance in domain theory. Let
Pos⊥ be the category of partially ordered sets with a least element, and order
preserving maps which also preserve the least element.

There is an obvious inclusion functor U : Pos⊥ → Pos, and U has a left
adjoint F . Given a poset X , F (X) is X “with a bottom element added”:�

�
�
�r

X

⊥

Given f : X → Y in Pos, F (f) sends the new bottom element of X to the new
bottom element of Y , and is just f on the rest. If f : X → Y in Pos is a map
and Y has a least element, we have F (X) → Y in Pos⊥ by sending ⊥ to the
least element of Y . So the adjunction is clear.

The monad UF : Pos→ Pos, just adding a least element, is called the lifting
monad. Unit and multiplication are:

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�-

��:
-

-

r r
r r

ηX : X → T (X) µX : T 2(X)→ T (X)

A T -algebra h : TX → X is first of all a monotone map, but since hηX = idX ,
h is epi in Pos so surjective. It follows that X must have a least element h(⊥).
From the axioms for an algebra one deduces that h must be the identity when
restricted to X , and h(⊥) the least element of X .

Exercise 112 Given C
G

// D
Foo , F a G, T = GF . Prove that the com-

parison functor K : C → T -Alg satisfies UTK = G and KF = F T where

T -Alg
UT

// D
FToo as in theorem 6.1.

Another poset example: algebras for the power set monad P on Set (example
j) of 2.2). Such an algebra h : P(X) → X must satisfy h({x}) = x and for
α ⊆ P(X):

h({h(A)|A ∈ α}) = h({x|∃A ∈ α(x ∈ A)}) = h(
⋃

α)

58



Now we can, given an algebra structure on X , define a partial order on X by
putting x ≤ y iff h({x, y}) = y.

Indeed, this is clearly reflexive and antisymmetric. As to transitivity, if x ≤ y
and y ≤ z then

h({x, z})=h({x, h({y, z})}) =
h({h({x}), h({y, z})})=h({x} ∪ {y, z}) =

h({x, y} ∪ {z})=h({h({x, y}), h({z})})=
h({y, z})=z

so x ≤ z.
Furthermore this partial order is complete: least upper bounds for arbitrary

subsets exist. For
∨

B = h(B) for B ⊆ X : for x ∈ B we have h({x, h(B)}) =
h({x} ∪ B) = h(B) so x ≤

∨

B; and if x ≤ y for all x ∈ B then

h({h(B), y})=h(B ∪ {y}) =
h(

⋃

x∈B{x, y})=h({h({x, y})|x ∈ B})=
h({y})=y

so
∨

B ≤ y.
We can also check that a map of algebras is a

∨

-preserving monotone
function. Conversely, every

∨

-preserving monotone function between complete
posets determines a P-algebra homomorphism.

We have an equivalence between the category of complete posets and
∨

-
preserving functions, and P-algebras.

Exercise 113 Let P : Setop → Set be the contravariant powerset functor, and
P̄ its left adjoint, as in j) of 5.1. Let T : Set→ Set the induced monad.

a) Describe unit and multiplication of this monad explicitly.

b) Show that Setop is equivalent to T -Alg [Hint: if this proves hard, have a
look at VI.4.3 of Johnstone’s “Stone Spaces”].

c) Conclude that there is an adjunction

CABool // Set
oo

which presents CABool as monadic over Set.

6.2 T -Algebras at least as complete as D

Let T be a monad on D. The following exercise is meant to show that if D has
all limits of a certain type, so does T -Alg. In particular, if D is complete, so is
T -Alg; this is often an important application of a monadic situation.

Exercise 114 Let E be a category such that every functor M : E → D has a
limiting cone. Now suppose M : E → T -Alg. For objects E of E , let M(E) be

the T -algebra T (mE)
hE→ mE .

59



a) Let (D, (νE |E ∈ E0)) be a limiting cone for UTM : E → D. Using the
T -algebra structure on M(E) and the fact that UTM(E) = mE , show
that there is also a cone (TD, (πE |E ∈ E0)) for UTM ;

b) Show that the unique map of cones: (TD, π)→ (D, ν) induces a T -algebra

structure TD
h
→ D on D;

c) Show that TD
h
→ D is the vertex of a limiting cone for M in T -Alg.

This exercise gives a situation which has its own name. For a functor G : C → D
we say that G creates limits of type E if for every functor M : E → C and every
limiting cone (D,µ) for GM in D, there is a unique cone (C, ν) for M in C which
is taken by G to (D,µ), and moreover this unique cone is limiting for M in C.

Clearly, if G creates limits of type E and D has all limits of type E , then C
has them, too. The exercise proves that the forgetful functor UT : T −Alg→ D
creates limits of every type.

6.3 The Kleisli category of a monad

I said before that for a monad T on a category D, there are a “maximal and
a minimal solution” to the problem of finding an adjunction which induces the
given monad.

We’ve seen the category T -Alg, which we now write as DT ; we also write
GT : T -Alg→ D for the forgetful functor. In case T arises from an adjunction

C
G

// D
Foo , there was a comparison functor C

K
→ DT . In the diagram

C
K //

G
��

>>
>>

>>
>>

DT

GT

~~||
||

||
||

D

F

__>>>>>>>>
FT

>>||||||||

we have that KF = F T and GTK = G.
Moreover, the functor K is unique with this property.

This leads us to define a category T -Adj of adjunctions C
G

// D
Foo such

that GF = T . A map of such T -adjunctions from C
G

// D
Foo to C′

G′

// D
F ′

oo is

a functor K : C → C′ satisfying KF = F ′ and G′K = G.
What we have proved about T -Alg can be summarized by saying that the

adjunction DT
GT

// D
FToo is a terminal object in T -Adj. This was the “maximal”

solution.
T -Adj has also an initial object: the Kleisli category of T , called DT . DT has

the same objects as D, but a map in DT from X to Y is an arrow X
f
→ T (Y )

60



in D. Composition is defined as follows: given X
f
→ T (Y ) and Y

g
→ T (Z) in

D, considered as a composable pair of morphisms in DT , the composition gf in
DT is the composite

X
f
→ T (Y )

T (g)
→ T 2(Z)

µZ
→ T (Z)

in D.

Exercise 115 Prove that composition is associative. What are the identities
of DT ?

The adjunction DT
GT

// D
FToo is defined as follows: the functor GT sends the

object X to T (X) and f : X → Y (f : X → T (Y ) in D) to

T (X)
T (f)
→ T 2(Y )

µY
→ T (Y )

The functor FT is the identity on objects and sends X
f
→ Y to X

f
→ Y

ηY
→ T (Y ),

considered as X → Y in DT .

Exercise 116 Define unit and counit; check FT a GT .

Exercise 117 Let T be a monad on D. Call an object of T -Alg free if it is in
the image of F T : D → T −Alg. Show that the Kleisli category DT is equivalent
to the full subcategory of T -Alg on the free T -algebras.

Now for every adjunction C
G

// D
Foo with GF = T , there is a unique compar-

ison functor L : DT → C such that GL = GT and LFT = F .
L sends the object X to F (X) and f : X → Y (so f : X → T (Y ) = GF (Y )

in D) to its transpose f̃ : F (X)→ F (Y ).

Exercise 118 Check the commutations. Prove the uniqueness of L w.r.t. these
properties.

Exercise 119 Let Rng1 be the category of rings with unit and unitary ring
homomorphisms. Since every ring with 1 is a (multiplicative) monoid, there is
a forgetful functor G : Rng1→ Mon. For a monoid M , let Z[M ] be the ring of
formal expressions

n1c1 + · · ·+ nkck

with k ≥ 0, n1, . . . , nk ∈ Z and c1, . . . , ck ∈ M . This is like a ring of polyno-
mials, but multiplication uses the multiplication in M . Show that this defines
a functor F : Mon → Rng1 which is left adjoint to G, and that G is monadic,
i.e. the category of GF -algebras is equivalent to Rng1. [Hint: Proceed as in the
example of the powerset monad. That is, let h : GF (M) → M be a monoid
homomorphism which gives M the structure of a GF -algebra. Find an abelian
group structure on M such that M becomes a ring with unit]

Exercise 120 What does the Kleisli category for the covariant powerset monad
look like?

61



7 Cartesian closed categories and the λ-calculus

Many set-theoretical constructions are completely determined (up to isomor-
phism, as always) by their categorical properties in Set. We are therefore
tempted to generalize them to arbitrary categories, by taking the character-
istic categorical property as a definition. Of course, this procedure is not really
well-defined and it requires sometimes a real insight to pick the ‘right’ categori-
cal generalization. For example, the category of sets has very special properties:

• f : X → Y is mono if and only if fg = fh implies g = h for any two maps
g, h : 1→ X , where 1 is a terminal object (we say 1 is a generator);

• objects X and Y are isomorphic if there exist monos f : X → Y and
g : Y → X (the Cantor-Bernstein theorem);

• every mono X
f
→ Y is part of a coproduct diagram

X
f

  
@@

@@
@@

@

Z g
// Y

And if you believe the axiom of choice, there is its categorical version:

• Every epi is split

None of these properties is generally valid, and categorical generalizations based
on them are usually of limited value.

In this chapter we focus on a categorical generalization of a set-theoretical
concept which has proved to have numerous applications: Cartesian closed cat-
egories as the generalization of “function space”.

In example f) of 5.1 we saw that the set of functions ZX appears as the value
at Z of the right adjoint to the product functor (−) ×X . A category is called
cartesian closed if such right adjoints always exist. In such categories we may
really think of this right adjoint as giving the “object of functions (or arrows)”,
as the treatment of the λ-calculus will make clear.

7.1 Cartesian closed categories (ccc’s); examples and ba-
sic facts

Definition 7.1 A category C is called cartesian closed or a ccc if it has finite
products, and for every object X of C the product functor (−) ×X has a right
adjoint.

Of course, “the” product functor only exists once we have chosen a product
diagram for every pair of objects of C. In this chapter we assume that we
have such a choice, as well as a distinguished terminal object 1; and we assume

62



also that for each object X we have a specified right adjoint to the functor
(−) ×X , which we write as (−)X (Many authors write X ⇒ (−), but I think
that overloads the arrows notation too much). Objects of the form ZX are
called exponents.

We have the unit
Y

ηY,X
→ (Y ×X)X

and counit
Y X ×X

εY,X
→ Y

of the adjunction (−) ×X a (−)X . Anticipating the view of Y X as the object
of arrows X → Y , we call ε evaluation.

Examples

a) A preorder (or partial order) is cartesian closed if it has a top element 1,
binary meets x∧y and for any two elements x, y an element x→y satisfying
for each z:

z ≤ x→y iff z ∧ x ≤ y

b) Set is cartesian closed; Cat is cartesian closed (2.1);

c) Top is not cartesian closed. In chapter 4 it was remarked, that for non-
locally compact spaces X , the functor X× (−) will not preserve quotients
(coequalizers); hence, it cannot have a right adjoint. There are various
subcategories of Top which are cartesian closed, if one takes as exponent
Y X the set of continuous maps Y → X , topologized with the compact-
open topology.

d) Pos is cartesian closed. The exponent Y X is the set of all monotone maps
X → Y , ordered pointwise (f ≤ g iff for all x ∈ X , fx ≤ gx in Y );

e) Grp and Abgp are not cartesian closed. In both categories, the initial
object is the one-element group. Since for non-initial groups G, (−) × G
does not preserve the initial object, it cannot have a right adjoint (the
same argument holds for Mon);

f) 1 is cartesian closed; 0 isn’t (why?);

g) SetC
op

is cartesian closed. Products and 1 are given “pointwise” (in fact
all limits are), that is F ×G(C) = F (C)×G(C) and 1(C) is the terminal
1 in Set, for all C ∈ C0.

The construction of the exponent GF is a nice application of the Yoneda
lemma. Indeed, for GF to be the right adjoint (at G) of (−)×F , we need
for every object C of C:

SetC
op

(hC × F,G) ' SetC
op

(hC , G
F ) ' GF (C)

where the last isomorphism is by the Yoneda lemma.

63



Now the assignment C 7→ SetC
op

(hC × F,G) defines a functor Cop → Set,
which we denote by GF . At the same time, this construction defines a
functor (−)F : SetC

op

→ SetC
op

, which is right adjoint to (−)× F . It is a
nice exercise to prove this.

h) A monoid is never cartesian closed unless it is trivial. However, if from
the definition of ‘cartesian closed’ one would delete the requirement that
it has a terminal object, an interesting class of ‘cartesian closed’ monoids
exists: the C-mnoids in the book “Higher Order Categorical Logic” by J.
Lambek and Ph. Scott.

Exercise 121 Show that every Boolean algebra is cartesian closed (as a partial
order).

Exercise 122 Show that CABool is not cartesian closed [use 2.3].

Exercise 123 Show that a complete partial order is cartesian closed if and only
if it’s a frame [see section 4.5].

Exercise 124 Let Ω be a frame. By the preceding exercise, it is cartesian
closed; denote by x→y the exponent in Ω. This exercise is meant to let you
show that the category CΩ from section 4.5 is cartesian closed.

a) Show that Ω also has greatest lower bounds
∧

B for all subsets B.

b) Given objects (X,EX) and (Y,EY ), define their exponent (Y,EY )(X,EX )

as (Y X , E) where Y X is the set of all functions X → Y in Set, and

E(f) =
∧

{

EX (x)→EY (f(x))|x ∈ X
}

Show that this defines a right adjoint (at (Y,EY )) of (−)× (X,EX).

Some useful facts:

• C is cartesian closed if and only if it has finite products, and for each pair
of objects X,Y there is an object Y X and an arrow ε : Y X ×X → Y such

that for every Z and map Z × X
f
→ Y there is a unique Z

f̃
→ Y X such

that

Z ×X
f

//

f̃×idX %%K
KKKKKKKKK Y

Y X ×X

ε

;;vvvvvvvvv

commutes (use the result of exercise 96).

• In a ccc, there are natural isomorphisms 1X ' 1; (Y × Z)X ' Y X × ZX ;
(Y Z)X ' Y Z×X .

64



• If a ccc has coproducts, we have X × (Y + Z) ' (X × Y ) + (X × Z) and
Y Z+X ' Y Z × Y X .

Exercise 125 Prove these facts.

Recall that two maps Z×X → Y and Z → Y X which correspond to each other
under the adjunction are called each other’s transposes.

Exercise 126 In a ccc, prove that the transpose of a composite Z
g
→W

f
→ Y X

is

Z ×X
g×idX
−→ W ×X

f̃
→ Y

if f̃ is the transpose of f .

Lemma 7.2 In a ccc, given f : X ′ → X let Y f : Y X → Y X
′

be the transpose
of

Y X ×X ′ id×f
→ Y X ×X

ε
→ Y

Then for each f : X ′ → X and g : Y → Y ′ the diagram

Y X

Y f

��

gX
// Y ′X

Y ′f

��

Y X
′

gX
′

// Y ′X′

commutes.

Proof. By the exercise, the transposes of both composites are the top and
bottom composites of the following diagram:

Y ′X ×X ′
id×f

// Y ′X ×X

ε

$$I
III

III
II

I

Y X ×X ′

gX×id
88qqqqqqqqqq id×f

//

Y f×id &&M
MMMMMMMMM
Y X ×X

gX×id
88ppppppppppp

ε // Y
g

// Y ′

Y X
′

×X ′

ε

88pppppppppppp

gX
′

×id

// Y ′X′

×X ′

ε

::uuuuuuuuuu

This diagram commutes because the right hand “squares” are naturality squares
for ε, the lower left hand square commutes because both composites are the
transpose of Y f , and the upper left hand square commutes because both com-
posites are gX × f .

Proposition 7.3 For every ccc C there is a functor Cop×C → C, assigning Y X

to (X,Y ), and given g : Y → Y ′ and f : X ′ → X, gf : Y X → Y ′X′

is either of
the composites in the lemma.

Exercise 127 Prove the proposition.

65



7.2 Typed λ-calculus and cartesian closed categories

The λ-calculus is an extremely primitive formalism about functions. Basically,
we can form functions (by λ-abstraction) and apply them to arguments; that’s
all. Here I treat briefly the typed λ-calculus.

We start with a set S of type symbols S1, S2, . . .
Out of S we make the set of types as follows: every type symbol is a type,

and if T1 and T2 are types then so is (T1⇒T2).
We have also terms of each type (we label the terms like t:T to indicate that

t is a term of type T ):

• we may have constants c:T of type T ;

• for every type T we have a denumerable set of variables x1:T, x2:T, . . .;

• given a term t:(T1⇒T2) and a term s:T1, there is a term (ts):T2;

• given t:T2 and a variable x:T1 there is a term λx.t:T1⇒T2.

Terms λx.t are said to be formed by λ-abstraction. This procedure binds the
variable x in t. Furthermore we have the usual notion of substitution for free
variables in a term t (types have to match, of course). Terms of form (ts) are
said to be formed by application.

In the λ-calculus, the only statements we can make are equality statements
about terms. Again, I formulate the rules in terms of theories. First, let us say
that a language consists of a set of type symbols and a set of constants, each of
a type generated by the set of type symbols.

An equality judgement is an expression of the form Γ|t = s:T (to be read:
“Γ thinks that s and t are equal terms of type T ”), where Γ is a finite set of
variables which includes all the variables free in either t or s, and t and s are
terms of type T .

A theory is then a set T of equality judgements which is closed under the
following rules:

i) Γ|t = s:T in T implies ∆|t = s:T in T for every superset ∆ of Γ;

ii) FV (t)|t = t:T is in T for every term t:T of the language (again, FV (t) is
the set of free variables of t);
if Γ|t = s:T and Γ|s = u:T are in T then so is Γ|t = u:T ;

iii) if t(x1, . . . , xn):T is a term of the language, with free variables x1:S1,. . . ,xn:Sn,
and Γ|s1 = t1:S1, . . . ,Γ|sn = tn:Sn are in T then

Γ|t[s1/x1, . . . , sn/xn] = t[t1/x1, . . . , tn/xn]:T

is in T ;

iv) if t and s are terms of type (T1⇒T2), x a variable of type T1 which does
not occur in t or s, and Γ ∪ {x}|(tx) = (sx):T2 is in T , then Γ \ {x}|t =
s:(T1⇒T2) is in T ;

66



v) if s:T1 and t:T2 are terms and x a variable of type T2, then

FV (s) \ {x} ∪ FV (t)|((λx.s)t) = s[t/x]:T1

is in T .

Given a language, an interpretation of it into a ccc C starts by choosing objects
[[S ]] of C for every type symbol S. This then generates objects [[T ]] for every
type T by the clause

[[T1⇒T2 ]] = [[T2 ]][[T1 ]]

The interpretation is completed by choosing interpretations

1
[[ c ]]
→ [[T ]]

for every constant c:T of the language.
Such an interpretation then generates, in much the same way as in chapter 4,

interpretations of all terms. For a finite set Γ = {x1:T1, . . . , xn:Tn} let’s again
write [[ Γ ]] for the product [[T1 ]] × · · · × [[Tn ]] (this is only defined modulo a
permutation of the factors of the product, but that will cause us no trouble).

The interpretation of t:T will now be an arrow

[[FV (t) ]]
[[ t ]]
→ [[T ]]

defined as follows:

• [[x ]] is the identity on [[T ]] for every variable x:T ;

• given [[ t ]] : [[FV (t) ]] → [[T2 ]][[T1 ]] and [[ s ]] : [[FV (s) ]] → [[T1 ]] we let
[[ (ts) ]] : [[FV ((ts)) ]]→ [[T2 ]] be the composite

[[FV ((ts)) ]]
〈[[ t ]]πt,[[ s ]]πs〉
−→ [[T2 ]][[T1 ]] × [[T1 ]]

ε
→ [[T2 ]]

where πt and πs are the projections from [[FV ((ts)) ]] to [[FV (t) ]] and
[[FV (s) ]], respectively;

• given [[ t ]] : [[FV (t) ]]→ [[T2 ]] and the variable x:T1 we let [[λx.t ]] : [[FV (t)\
{x} ]]→ [[T2 ]][[T1 ]] be the transpose of

[[FV (t) \ {x} ]]× [[T1 ]]
t̃
→ [[T2 ]]

where, if x occurs free in t so [[FV (t) \ {x} ]] × [[T1 ]] ' [[FV (t) ]], t̃ is
just [[ t ]]; and if x doesn’t occur in t, t̃ is [[ t ]] composed with the obvious
projection.

67



We now say that an equality judgement Γ|t = s:T is true in this interpretation,
if the diagram

[[FV (t) ]]

[[ t ]]

$$I
IIIIIIII

[[ Γ ]]

πt

::uuuuuuuuu

πs
$$I

IIIIIIII
[[T ]]

[[FV (s) ]]

[[ s ]]

::uuuuuuuuu

commutes (again, πs and πt projections).

Lemma 7.4 Let t(x1, . . . , xn):T have free variables xi:Ti and let ti:Ti be terms.
Let

t̃i : [[FV (t[t1/x1, . . . , tn/xn]) ]]→ [[Ti ]]

be the obvious composite of projection and [[ ti ]].
Then the composition

[[FV (t[t1/x1, . . . , tn/xn]) ]]
〈t̃i|i=1...n〉
−→

n
∏

i=1

[[Ti ]] = [[FV (t) ]]
[[ t ]]
→ [[T ]]

is the interpretation [[ t[t1/x1, . . . , tn/xn] ]].

Exercise 128 Prove the lemma [take your time. This is not immediate].

Theorem 7.5 Let S be a set of equality judgements and T = Cn(S) be the
least theory containing S. If every judgement of S is true in the interpretation,
so is every judgement in T .

Proof. Again, we show that the set of true judgements is a theory, i.e. closed
under the rules in the definition of a theory.
i) and ii) are trivial;
iii) follows at once by lemma 7.4;
iv) Since Γ∪ {x} = (Γ \ {x})∪ {x} and because of the inductive hypothesis, we
have that

[[FV (s) ]] × [[T1 ]]
[[ s ]]×id

// [[T1⇒T2 ]]× [[T1 ]]

ε

''OOOOOOOOOOO

[[ Γ \ {x} ∪ {x} ]]

πs×id
55llllllllllllll

πt×id
))RRRRRRRRRRRRRR

[[T2 ]]

[[FV (t) ]]× [[T1 ]]
[[ t ]]×id

// [[T1⇒T2 ]]× [[T1 ]]

ε

77ooooooooooo

68



commutes. Taking the transposes of both maps, we get the equality we want.

v) According to lemma 7.4, [[FV (s[t/x]) ]]
[[ s[t/x] ]]
−→ [[T1 ]] is

[[FV (s[t/x]) ]]
t̃
→ [[FV (s) ]]

[[ s ]]
→ [[T1 ]]

This is the same as

[[FV (s[t/x]) ]]
〈π,[[ t ]]〉
→ [[FV (s) \ {x} ]]× [[T2 ]]

[[λx.s ]]×id
−→ [[T2⇒T1 ]]× [[T2 ]]

ε
→ [[T1 ]]

which is

[[FV ((λx.s)t) ]]
[[ ((λx.s)t) ]]
−→ [[T1 ]]

There is also a completeness theorem: if a judgement Γ|t = s:T is true in all
possible interpretations, then every theory (in a language this judgement is in)
contains it.

The relevant construction is that of a syntactic cartesian closed category
out of a theory, and an interpretation into it which makes exactly true the
judgements in the theory. The curious reader can find the, somewhat laborious,
treatment in Lambek & Scott’s “Higher Order Categorical Logic”.

7.3 Representation of primitive recursive functions in ccc’s
with natural numbers object

Dedekind observed, that in Set, the set ω is characterized by the following

property: given any set X , any element x ∈ X and any function X
f
→ X , there

is a unique function F : ω → X such that F (0) = x and F (x+ 1) = f(F (x)).
Lawvere took this up, and proposed this categorical property as a definition

(in a more general context) of a “natural numbers object” in a category.

Definition 7.6 In a category C with terminal object 1, a natural numbers ob-

ject is a triple (0, N, S) where N is an object of C and 1
0
→ N , N

S
→ N arrows

in C, such that for any other such diagram

1
x // X

f
// X

there is a unique map φ : N → X making

1
0 //

x
��

??
??

??
??

N
S //

φ

��

N

φ

��

X
f

// X

commute.

69



Of course we think of 0 as the zero element, and of S as the successor map. The
defining property of a natural numbers object enables one to “do recursion”,
a weak version of which we show here: we show that every primitive recursive
function can be represented in a ccc with natural numbers object.

Definition 7.7 Let C be a ccc with natural numbers object (0, N, S). We say
that a number-theoretic function F : Nk → N is represented by an arrow f :
Nk → N if for any k-tuple of natural numbers n1, . . . nk, the diagram

1
0 //

0
&&M

MMMMMMMMMMMM N
〈Sn1 ,...,Snk 〉

// Nk

f

��

N
SF (n1,...,nk)

// N

commutes.

Recall that the class of primitive recursive functions is given by the following
clauses:

• The constant zero function λ~x.0 : Nk → N, the function λx.x+ 1 : N→ N

and the projections λ~x.xi : N→ N are primitive recursive;

• The primitive recursive functions are closed under composition: if F1, . . . , Fk :
Nl → N andG : Nk → N are primitive recursive, then so isG(〈F1, . . . , Fk〉) :
Nl → N;

• The primitive recursive functions are closed under definition by primitive
recursion: if G : Nk → N and H : Nk+2 → N are primitive recursive,
and F : Nk+1 → N is defined by F (0, ~x) = G(~x) and F (n + 1, ~x) =
H(n, F (n, ~x), ~x) then F is primitive recursive.

Proposition 7.8 In a ccc C with natural numbers object, every primitive re-
cursive function is representable.

Proof. I do only the case for definition by primitive recursion. So by inductive
hypothesis we have arrows G and H representing the homonymous functions.
By interpretation of the λ-calculus, I use λ-terms: so there is an arrow

λ~x.G(~x) : 1→ N (Nk)

and an arrow
λ~x.H(n, φ(~x), ~x) : N (Nk) ×N → N (Nk)

which is the interpretation of a term with free variables φ:N (Nk) and n:N ; this
map is the exponential transpose of the map which intuitively sends (n, φ, ~x) to
(n, φ(~x), ~x). Now look at

1
〈λ~x.G(~x),0〉

// N (Nk) ×N
(λ~x.H(n,φ(~x),~x))×S

// N (Nk) ×N

70



By the natural numbers object property, there is now a unique map

F̄ = 〈F̃ , σ〉 : N → N (Nk) ×N

which makes the following diagram commute:

1
0 //

〈λ~x.G(~x),0〉
))RRRRRRRRRRRRRRRR N

F̄

��

S // N

F̄

��

N (Nk) ×N
(λ~x.H(n,φ(~x),~x))×S

// N (Nk) ×N

One verifies that σ is the identity, and that the composite

Nk+1
F̃×id

// N (Nk) ×Nk
ε // N

represents F .

Exercise 129 Make these verifications.

One could ask: what is the class of those numerical functions (that is, functions
Nk → N) that are representable in every ccc with natural numbers object? It is
not hard to see, that there are representable functions which are not primitive
recursive (for example, the Ackermann function). On the other hand, Logic
teaches us that every such representable function must be recursive, and that
there are recursive, non-representable functions.

The answer is: the representable functions are precisely the so-called ε0-
recursive functions from Proof Theory; and this was essentially shown by Gödel
in 1958.

71



8 Recursive Domain Equations

A recursive domain equation in a category C is an “equation” of the form:

X ∼= F (X, . . . ,X)

where F is a functor: (Cop)n × Cm → C.
Often, we are interested in not just any solution of such an equation, but

in certain ‘universal’ solutions. Consider, as an example, the case C = Set, and
F (X) = 1 + (A×X) for a fixed, nonempty set A. There are many solutions of
X ∼= F (X) but one stands out: it is the set of finite sequences of elements of A.

In what sense is this a universal solution? Do such solutions always exist?
There is a piece of theory about this, which is by now a classic in theoretical

Computer Science and was developed by Dana Scott around 1970; it is concerned
with a certain subcategory of Pos. It is a nice application of the methods of
category theory.

8.1 The category CPO

Let (P,≤) be a partially ordered set. A downset or downwards closed subset of
P is a subset A ⊆ P such that if a ∈ A and p ≤ a, then p ∈ A. The downwards
closure ↓A of A ⊆ P is the least downset of P containing A: ↓A = {p ∈ P | ∃a ∈
A.p ≤ a}. We write ↓p for ↓{p}.

An ω-chain in P is a function f : N→ P such that f(0) ≤ f(1) ≤ . . ..
(P,≤) is a cpo or ω-complete partial order if every ω-chain in P has a colimit
(i.e., least upper bound). This colimit is denoted

⊔

n∈N
f(n).

A monotone function f : P → Q between cpo’s is continuous if it preserves
least upper bounds of ω-chains.

Exercise 130 Every cpo P can be regarded as a topological space, in the
following way: open sets are those sets A ⊆ P which are upwards closed
(a ∈ A ∧ a ≤ b ⇒ b ∈ A) and such that for any chain f : N → P , if
⊔

n∈N
f(n) ∈ A then f(n) ∈ A for some n ∈ N. Show that f : P → Q is

continuous if and only if f is continuous w.r.t. the topology just defined.

There is a category CPO of cpo’s and continuous maps, and this category is our
object of study for a while. Since every continuous function is monotone, there
is a forgetful functor U : CPO→ Pos.

Theorem 8.1 U : CPO→ Pos is monadic.

Proof. We have to show that U has a left adjoint F : Pos → CPO such that
CPO is equivalent to the category of UF -algebras on Pos.

Call a subset A of a poset P an ω-ideal if there is an ω-chain f : N → P
such that A is the downwards closure of the image of f . Let ω−Idl(P ) the set
of ω-ideals of P , ordered by inclusion. If ϕ : P → Q is a monotone map and

72



A ⊆ P an ω-ideal, then ↓ϕ[A] = {q ∈ Q | ∃a ∈ A.q ≤ ϕ(a)} is also an ω-ideal of
Q, for if A = ↓im(f) for f : N→ P then ↓ϕ[A] = ↓im(ϕ ◦ f).

If A0 ⊆ A1 ⊆ . . . is an ω-chain of elements of ω−Idl(P ) then also
⋃

n∈N
An ∈

ω−Idl(P ), for, if Ai = ↓im(fi) define f : N→ P by:

f(n) =
fn(m) where m is minimal such that
fn(m) is an upper bound of
{fi(k) | i, k ∈ {0, . . . , n}} ∪ {f(k) | k < n}

Then f is a chain and
⋃

n∈N
An = ↓im(f).

So ω−Idl(P ) is a cpo; and since (for a monotone ϕ : P → Q) the map A 7→
↓ϕ[A] commutes with unions of ω-chains, it is a continuous map: ω−Idl(P ) →
ω−Idl(Q). So we have a functor F : Pos → CPO: F (P ) = ω−Idl(P ), and for
ϕ : P → Q in Pos, F (ϕ) : ω−Idl(P ) → ω−Idl(Q) is the map which sends A to
↓ϕ[A].

Every monotone function f : P → U(Q) where Q is a cpo, gives a continuous
function f̃ : ω−Idl(P ) → Q defined as follows: given A ∈ ω−Idl(P ), if A =
↓im(g) for a chain g : N → P , let f̃(A) be the least upper bound in Q of the
chain f ◦ g. This is independent of the choice of g, for if ↓im(g) = ↓im(g′) then
the chains f ◦ g and f ◦ g′ have the same least upper bound in Q.

In the other direction, first let ηP : P → ω−Idl(P ) be defined by ηP (p) = ↓p.
Every continuous function g : ω−Idl(P ) → Q gives a monotone ḡ : P → U(Q)
by composition with ηP .

Exercise 131 Check that these two operations define a natural 1-1 correspon-
dence between Pos(P,U(Q)) and CPO(ω−Idl(P ), Q) and therefore an adjunc-
tion F a U of which η = (ηP )P is the unit. What is the counit of this adjunction?
Is it iso? Epi? What do you conclude about the functor U?

The monad UF has η as unit, and as multiplication

µ =
⋃

: ω−Idl(ω−Idl(P ))→ ω−Idl(P )

taking the union of an ω-ideal of ω-ideals of P .

Exercise 132 Check that µ is well-defined. Prove that every UF -algebra is a
cpo [Hint: compare with the proof that algebras for the powerset monad are
equivalent to join-complete posets and join-preserving maps], so that CPO is
equivalent to UF -Alg.

A corollary is now that CPO has all the limits that Pos has (that is, all small
limits), and that these are created by the forgetful functor U . So, the limit in
Pos of a diagram of cpo’s and continuous maps, is also a cpo.

We shall also consider the category CPO⊥ of cpo’s with a least element.
CPO⊥ is a full subcategory of CPO (i.e., maps between objects of CPO⊥ are
continuous but don’t have to preserve the least element).

73



It is, categorically speaking, bad practice to require properties of objects
without requiring the maps to preserve them. This is borne out by the fact that
CPO⊥ loses the nice properties of CPO:

Fact. CPO⊥ is neither finitely complete nor finitely cocomplete.
For instance consider the cpo’s:

T =

a

??
??

??
??

b

��
��

��
��

⊥

and U =

α

OOOOOOOOOOOOOO β

oooooooooooooo

u

@@
@@

@@
@ v

~~
~~

~~
~

⊥

Both T and U are objects of CPO⊥. Let f, g : T → U be defined by: f(a) =
g(a) = α, f(b) = g(b) = β, f(⊥) = u, g(⊥) = v. f and g are maps of CPO⊥,
but cannot have an equalizer in CPO⊥.

Exercise 133 Prove this. Prove also that the coproduct of two one-element
cpo’s cannot exist in CPO⊥.

A map of cpo’s with least elements which preserves the least element is called
strict. The category (CPO⊥)s of cpo’s with least element and strict continuous
maps, is monadic over CPO by the “lifting monad”: adding a least element (see
chapter 6), and therefore complete.

Lemma 8.2 Let P be a cpo and (xij )i,j∈N be a doubly indexed set of elements
of P such that i ≤ i′ and j ≤ j′ implies xij ≤ xi′j′ . Then

⊔

i∈N

⊔

j∈N

xij =
⊔

j∈N

⊔

i∈N

xij =
⊔

i∈N

xii

Exercise 134 Prove lemma 8.2.

Theorem 8.3 CPO is cartesian closed.

Proof. The exponent PQ of two cpo’s is the set of continuous maps from Q to
P , ordered pointwise (i.e. f ≤ g iff ∀q ∈ Q.f(q) ≤ g(q)). This is a cpo, because
given a chain f0 ≤ f1 ≤ . . . of continuous maps, taking least upper bounds
pointwise yields a continuous map:

f(q) =
⊔

i∈N

fi(q)

For, using lemma 8.2, f(
⊔

j qj) =
⊔

i

⊔

j fi(qj) =
⊔

j

⊔

i fi(qj) =
⊔

j f(qj)

Theorem 8.4 Let P be a cpo with least element ⊥. Then:

74



a) Every continuous map f : P → P has a least fixed point fix(f) (i.e. a least
x with f(x) = x);

b) The assignment f 7→ fix(f) is a continuous function: P P → P .

Proof. Consider the chain ⊥ ≤ f(⊥) ≤ f 2(⊥) ≤ . . .. It’s a chain because
f is monotone. Let a be its least upper bound in P . Since f is continuous,
f(a) = f(

⊔

n∈N
fn(⊥)) =

⊔

n∈N
fn+1(⊥) = a, so a is a fixed point; if b is

another fixed point of f then since ⊥ ≤ b = f(b), fn(⊥) ≤ b for all n, hence
a ≤ b, so a is the least fixed point of f .

For the second statement, first notice that if f ≤ g in P P then fn(⊥) ≤
gn(⊥) so fix(f) ≤ fix(g), so fix is monotone; and if f1 ≤ f2 ≤ . . . then
fix(

⊔

n fn) =
⊔

i(
⊔

n fn)
i(⊥) ≥

⊔

i

⊔

n f
i
n(⊥) = (by lemma 8.2)

⊔

n

⊔

i f
i
n(⊥) =

⊔

n fix(fn). The other inequality follows from the monotonicity of fix.

For purposes of interpretation of recursion equations, it is convenient to have a
notation for fixed points of functions of more than one variable. Let P and Q
be cpo’s with ⊥ and f : P ×Q→ P continuous; by cartesian closedness of CPO

we have f̃ : Q→ PP and we can consider the composite

Q
f̃
→ PP

fix
→ P

which is a continuous map by theorem 8.4. fix(f̃(q)) is the least fixed point of
the function which sends p to f(p, q); we write µp.f(p, q) for this.

Békic’ theorem1 says that if we want to find a simultaneous fixed point
(x, y) ∈ P ×Q of a function f : P ×Q→ P ×Q, we can do it in two steps, each
involving a single fixed point calculation:

Theorem 8.5 (Békic’s simultaneous fixed point theorem) Let P and Q
be cpo’s with ⊥ and f : P ×Q→ P , g : P ×Q→ Q be continuous maps. Then
the least fixed point of the map 〈f, g〉 : P ×Q→ P ×Q is the pair (x̂, ŷ) ∈ P ×Q,
where

x̂ = µx.f(x, µy.g(x, y))
ŷ = µy.g(x̂, y)

Proof. The least fixed point a of a function f has the property, that for any
y, if f(y) ≤ y then a ≤ y (check this!), and moreover it is characterized by this
property. Therefore the element µx.Φ(x, ~y) satisfies the rule:

Φ(x′, ~y) ≤ x′ ⇒ µx.Φ(x, ~y) ≤ x′

and is characterized by it. Now suppose:

(1) f(a, b) ≤ a
(2) g(a, b) ≤ b

From (2) and the rule we get µy.g(a, y) ≤ b, hence by (1) and monotonicity of
f , f(a, µy.g(a, y)) ≤ f(a, b) ≤ a. Applying the rule again yields:

x̂ = µx.f(a, µy.g(x, y)) ≤ a

1This theorem is known in recursion theory as Smullyan’s double recursion theorem

75



so by (2) and monotonicity of g: g(x̂, b) ≤ g(a, b) ≤ b, so by the rule, µy.g(x̂, y) ≤
b. We have derived that (x̂, ŷ) ≤ (a, b) from the assumption that 〈f, g〉(a, b) ≤
(a, b); this characterizes the least fixed point of 〈f, g〉, which is therefore (x̂, ŷ).

Exercise 135 Generalize theorem 8.5 to 3 continuous functions with 3 vari-
ables, and, if you have the courage, to n continuous functions with n variables.

Exercise 136 Suppose D,E are cpo’s with ⊥ and f : D → E, g : E → D
continuous. Show that µd.gf(d) = g(µe.fg(e)) [Hint: use the rule given in the
proof of theorem 8.5]

8.2 The category of cpo’s with ⊥ and embedding-projection
pairs; limit-colimit coincidence; recursive domain equa-
tions

So far, we have seen that the category CPO is cartesian closed and complete.
About CPO⊥ we can say that:

• CPO⊥ has products and the inclusion CPO⊥ → CPO preserves them;

• if Y has ⊥ then Y X has ⊥, for any X .

So, also CPO⊥ is cartesian closed and supports therefore interpretation of simply
typed λ-calculus (see chapter 7) and recursion (by the fixed point property).
However, the structure of cpo’s is much richer than that. First, we shall see
that by restricting the morphisms of CPO⊥ we get a “cpo of cpo’s”. This will
then, later, allow us to solve recursive domain equations like:

X ∼= 1 +A×X lists on alphabet A
X ∼= XX untyped λ-calculus

First we have to go through some technique.

Definition 8.6 Let P and Q posets. A pair P
i

// Q
roo

of monotone maps is

called an embedding-projection pair (e-p pair for short), where i is the embed-
ding, r the projection, if i a r and i is full and faithful; equivalently: ri = idP
and ir ≤ idQ.

By uniqueness of adjoints, each member of an e-p pair determines the other. It
is evident that 〈idP , idP 〉 is an e-p pair, and that e-p pairs compose. We can
therefore define a category CPOEP

⊥ : objects are cpo’s with ⊥, and morphisms

P → Q are e-p pairs P
i

// Q
roo

such that both i and r are continuous.

Lemma 8.7 Let P
i

// Q
roo

be an e-p pair, where P and Q are cpo’s with ⊥.

Then both i and r are strict, and i is continuous.

76



Proof. Being a left adjoint, i preserves colimits, so i is strict and continuous;
since ri = idP we also have r(⊥Q) = ri(⊥P ) = ⊥P .

For the following theorem, recall that every diagram in CPO⊥ with strict con-
tinuous maps will have a limit in CPO⊥, since this takes place in (CPO⊥)s which
is monadic over CPO.

Theorem 8.8 (CPOEP
⊥ as “cpo of cpo’s”; limit-colimit coincidence)

a) Any chain of maps

P1
i1

// P2

r1oo

i2
// P3

r2oo

i3
// · · ·

r3oo

in CPOEP
⊥ has a colimit in CPOEP

⊥ ;

b) the vertex of this colimit, P , is the limit (in CPO⊥) of the diagram

P1 P2
r1oo cdots

r2oo

and P is also the colimit in CPO⊥ of the diagram

P1
i1 // P2

i2 // · · ·

Proof. We prove a) and b) simultaneously. Note that the limit of P1
r1← P2

r2←
. . . exists in CPO⊥ since all maps are strict by lemma 8.7; it is the object
P = {(p1, p2, . . .) ∈

∏

n≥1 Pn | ∀i ≥ 1 ri(pi+1) = pi} with pointwise order.

For any k we have maps Pk
ek

// P
πkoo where πk is the k-th projection, and

ek is defined by:

(ek(p))j =







rjrj+1 · · · rk1 (p) if j < k
p if j = k

ij1 · · · ik(p) if j > k

Now πkek(p) = (ek(p))k = p and

ekπk(p1, p2, . . .) = (p1, p2, . . . , pk, ikrk(pk+1), ik+1ikrkrk+1(pk+2), . . .)
≤ (p1, p2, . . .)

So 〈ek, πk〉 is an e-p pair. Since obviously riπi+1 = πi for all i ∈ N, also
ek+1ik = ek must hold (since one component of an e-p pair uniquely determines
the other), hence

{Pk
〈ek ,πk〉
→ P | k ≥ 1}

is a cocone in CPO
EP
⊥ for the given chain.

Suppose now that {Pk
〈jk ,sk〉
→ Q | k ≥ 1} is another cocone for the chain in

CPOEP
⊥ . Immediately, we have (since P is the limit of P1

r1← P2
r2← · · · ) a unique

77



σ : Q → P such that sk = πkσ for all k; σ(q) = (s1(q), s2(q), . . .). Note that σ
is continuous. Since we have a cocone, for any (p1, p2, . . .) in P we have that in
Q:

jk(pk) = jk+1ik(pk) = jk+1ikrk(pk+1) ≤ jk+1(pk+1)

so j1(p1) ≤ j2(p2) ≤ . . . and we define J : P → Q by

J(p1, p2, . . .) =
⊔

k

jk(pk)

Then J(σ(q)) =
⊔

k jksk(q) ≤ q because 〈jk, sk〉 is an e-p pair, and by continuity
of sn,

(σJ(p1, p2, . . .))n = sn(
⊔

k jk(pk)) =
sn(

⊔

k≥n jk(pk)) =
⊔

k≥n snjk(pk)

For k ≥ n write 〈ink, rnk〉 for the e-p pair Pn // Pk
oo . Using that rnksk = sn,

skjk = idPk ,

⊔

k≥n snjk(pk) =
⊔

k≥n rnkskjk(pk) =
⊔

k≥n rnk(pk) =
⊔

k≥n pn = pn

So σJ = idP ; i.e. the cocone with vertex Q factors uniquely through the one
with vertex P ; hence the latter is colimiting.

The only thing which remains to be proven, is that {Pk
ek→ P | k ≥ 1} is also

a colimiting cocone in CPO⊥. Firstly, from the definition of Pk
ek

// P
πkoo and

the already seen

ekπk(p1, p2, . . .) = (p1, . . . , pk, ikrk(pk+1), ik+1ikrkrk+1(pk+2), . . .)

it is immediate that, in P ,

(p1, p2, . . .) =
⊔

k≥1

ekπk(p1, p2, . . .) =
⊔

k≥1

ek(pk)

So if {Pk
fk→ Q | k ≥ 1} is another cocone in CPO⊥ we can define a continuous

factorization P
f
→ Q by

f(p1, p2, . . .) =
⊔

k

fk(pk)

but in fact we have no other choice, hence the factorization is unique.

Define an ω-category as a category where every chain of maps

A1
f1
→ A2

f2
→ A3 → · · ·

has a colimiting cocone; and call a functor between ω-categories continuous if
it preserves colimits of chains. Theorem 8.8 says that CPOEP

⊥ is an ω-category.

78



Lemma 8.9 Let A be an ω-category and F : A → A continuous. If A ∈ A0

and A
f
→ F (A) a map, and the chain

A
f
→ F (A)

F (f)
→ F 2(A)

F 2(f)
→ F 3(A)→ . . .

has colimit with vertex D, then D is isomorphic to F (D).

In particular, if A has an initial object, F has an up to isomorphism fixed point.

Exercise 137 Prove lemma 8.9. It generalizes the idea of the fixed point prop-
erty for cpo’s.

For any endofunctor F : A → A we define the category F -Alg of F -algebras in
a similar way as for a monad, but simpler (since the functor has less structure

than the monad): objects are maps FX
h
→ X , just like that, and maps (X,h)→

(Y, k) are maps f : X → Y in A such that

F (X)
F (f)

//

h

��

F (Y )

k

��

X
f

// Y

commutes. We have:

Lemma 8.10 (Lambek’s Lemma) If F (X)
h
→ X is an initial object of F -

Alg, then h is an isomorphism in A.

Proof. F 2(X)
F (h)
→ F (X) is also an F -algebra, so there is a unique k : X →

F (X) such that

F (X)
F (k)

//

h

��

F 2(X)

F (h)

��

X
k

// F (X)

commutes. Since also

F 2(X)

F (h)

��

F (h)
// F (X)

h

��

F (X)
h

// X

commutes, h is a map of F -algebras: (F (X), F (h)) → (X,h). Therefore is
hk : (X,h)→ (X,h) a map in F -Alg and since (X,h) is initial, hk = idX . Then
kh = F (h)F (k) = F (hk) = F (idX) = idF (X), so h is iso with inverse k.

79



Exercise 138 In the situation of lemma 8.9, i.e. A an ω-category, F : A → A
continuous, the colimit of

0
!
→ F (0)

F (!)
→ F 2(0)

F 2(!)
→ F 3(0)→ . . .

(where 0 is initial in A, and ! the unique map 0 → F (0)) gives the initial
F -algebra.

In view of Lambek’s Lemma and other considerations (such as the desirability
of induction priciples for elements of recursively defined domains), we aim to
solve an equation:

X ∼= F (X)

as an initial F -algebra. So we have seen, that as long as F is a continuous
functor, we do have initial F -algebras in CPOEP

⊥ . But this in itself did not
require the introduction of CPO

EP
⊥ for also CPO is an ω-category with an initial

object (as is, by the way, Set). The force of the embedding-projection pairs
resides in the possibilities of handling “mixed variance”. Since the expression
XX does not define a functor but in general, the expressionXY defines a functor
Cop × C → C, one says that in XX , the variable X occurs both covariantly and
contravariantly (or, positively and negatively). We shall see that functors of
mixed variance on CPO⊥, that is: functors (CPO

op
⊥ )n×(CPO⊥)m → CPO⊥, can,

under certain conditions, be transformed into continuous covariant functors:
(CPO

EP
⊥ )n+m → CPO

EP
⊥ . Composition with the diagonal functor ∆ : CPO

EP
⊥ →

(CPO
EP
⊥ )n+m gives a continuous endofunctor on CPO

EP
⊥ which has a fixed point

(up to isomorphism).

The first ingredient we need is the notion of local continuity. Recall that in the
proof that CPO was a ccc, we have basically seen that for cpo’s P and Q the
set CPO(P,Q) is itself a cpo. Of course, this holds for CPOop too, and also for
products of copies of CPO and CPO

op:

(CPO
op)n × (CPO)m((A′

1, . . . , A
′
n, B1, . . . , Bm), (A1, . . . , An, B

′
1, . . . , B

′
m))

is the cpo CPO(A1, A
′
1)× · · · × CPO(Bm, B

′
m).

Definition 8.11 A functor F : (CPO
op)n × (CPO)m → CPO is called locally

continuous if its action on maps:

F1 : (CPO
op)n × (CPO)m(( ~A′, ~B), ( ~A, ~B′))→ CPO(F ( ~A′, ~B), F ( ~A, ~B′))

is a map of cpo’s, that is: continuous. We have the same notion if we replace
CPO by CPO⊥.

Example. The product and coproduct functors: CPO×CPO→ CPO, and the
exponent functor: CPO

op × CPO→ CPO are locally continuous.

Theorem 8.12 Suppose F : CPO
op
⊥ × CPO⊥ → CPO⊥ is locally continuous.

Then there is an F̂ : CPO
EP
⊥ × CPO

EP
⊥ → CPO

EP
⊥ which is continuous and has

the same action on objects as F .

80



Proof. We put F̂ (P,Q) = F (P,Q), so the last statement of the theorem has

been taken care of. Given e-p pairs P
i

// P ′
roo

and Q
j

// Q′
soo

we have an

e-p pair F (P,Q)
F (r,j)

// F (P ′, Q′)
F (i,s)
oo since F (i, s) ◦ F (r, j) = F (r ◦ i, s ◦ j) (recall

that F is contravariant in its first argument!) = F (id, id) = idF (P,Q), and
F (r, j) ◦ F (i, s) = F (i ◦ r, j ◦ s) ≤ F (id, id) = idF (P ′,Q′) (the last inequality is
by local continuity of F ). So we let

F̂ (〈i, r〉, 〈j, s〉) = 〈F (r, j), F (i, s)〉

Then clearly, F̂ is a functor. To see that F̂ is continuous, suppose we have a
chain of maps in CPO

EP
⊥ × CPO

EP
⊥ : (A1, B1) → (A2, B2) → . . . with colimit

(D,E). That means in CPOEP
⊥ we have two chains, each with its colimit:

A1
//

〈i1,r1〉 !!B
BB

BB
BB

B
A2

//

〈i2,r2〉···

��

· · ·

D

B1
//

〈j1,s1〉 !!B
BB

BB
BB

B
B2

//

〈j2,s2〉···

��

· · ·

E

From the proof of theorem 8.8 we know that idD =
⊔

n i
n◦rn and idE =

⊔

n j
n◦

sn so id(D,E) =
⊔

(in ◦rn, jn◦sn). From local continuity of F then, idF̂ (D,E) =

F̂ (id(D,E)) = 〈F (idD, idE), F (idD, idE〉 =
⊔

n〈F (in ◦ rn, jn ◦ sn), F (in ◦ rn, jn ◦

sn)〉. But this characterizes the colimit of a chain in CPO
EP
⊥ , so F̂ (D,E) =

F (D,E) is isomorphic to the vertex of the colimit in CPO
EP
⊥ of the chain:

F̂ (A1, B1)→ F̂ (A2, B2)→ · · ·

Example: a model of the untyped λ-calculus. In the untyped λ-calculus, we
have a similar formalism as the one given in Chapter 7, but now there are no
types. That means, that variables denote functions and arguments at the same
time!

In order to model this, we seek a nontrivial solution to:

X ∼= XX

(Since X = 1 is always a solution, “nontrivial” means: not this one) According
to theorem 8.12, the exponential functor CPO

op
⊥ × CPO⊥ → CPO⊥, which

sends (X,Y ) to Y X and is locally continuous, gives rise to a continuous functor

CPO
EP
⊥ × CPO

EP
⊥

Exp
→ CPO

EP
⊥ . Let F : CPO

EP
⊥ → CPO

EP
⊥ be the composite

CPO
EP
⊥

∆
→ CPO

EP
⊥ × CPO

EP
⊥

Exp
→ CPO

EP
⊥

∆ (the diagonal functor) is continuous, so F is, since continuous functors com-
pose.

81



Exercise 139 Show that the functor F works as follows: for an e-p pair P
i

// Q
roo

,

F (〈i, r〉) is the e-p pair PP
I

// QQ
Roo where I(f) = i◦f ◦r and R(g) = r◦g ◦ i.

Let us try and apply lemma 8.9; we need a non-initial object P and a map

P
f
→ F (P ) in CPO

EP
⊥ .

That is, an embedding-projection pair P // PP
oo . Well, it is readily

checked that for any cpo P with⊥ the pair 〈ι, ρ〉 is an e-p pair, where ι : P → P P

sends p to the function which has constant value p, and ρ : P P → P sends the
function f to f(⊥). We now summarize all our preparations into the final
theorem.

Theorem 8.13 (Scott) Let P be a cpo with ⊥. Define a diagram

D0
i0

// D1

r0oo

i1
// D2

r1oo

i2
// · · ·

r2oo

in CPO as follows:

• D0 = P ; Dn+1 = DDn
n ;

• i0 : P → PP is λp.λq.p;

• r0 : PP → P is λf.f(⊥);

• in+1 : DDn
n = Dn+1 → D

Dn+1

n+1 is λf.in ◦ f ◦ rn;

• rn+1 : D
Dn+1

n+1 → DDn
n is λg.rn ◦ g ◦ in.

Let D∞ be (vertex of) the limit in CPO of

D0
r0← D1

r1← D2
r2← · · ·

Then D∞
∼= DD∞

∞ in CPO.

82



Index

abelianization, 5
adjoint functor theorem, 52
adjunction, 46
Alexandroff topology, 4
algebras for an endofunctor, 79
algebras for monad, 55
arrows, 1
associative, 1
atom in Boolean algebra, 14

Békic’ Theorem, 75
Boolean algebra, 14

atomic, 14
complete, 14

category, 1
cartesian, 22
cartesian closed, 62
complete, 24
discrete, 12
finitely complete, 22
has binary products, 19
has equalizers, 19
has pullbacks, 19
indiscrete, 12
left exact, 22
lex, 22
locally small, 4
path, 3
quotient, 3
regular, 28
slice, 4
small, 11

ccc, 62
closure operation on poset, 55
cocone for a functor, 25
codomain, 1
coequalizer, 25
coequalizer diagram, 25
colimiting cocone, 25
comonad, 54
comparison functor, 57
complement in a lattice, 14

composition, 1
comultiplication of comonad, 54
cone for a functor, 16
congruence relation, 3
continuous function of cpo’s, 72
continuous functor of ω-categories,

78
coproduct, 25
coproduct inclusions, 25
coprojections, 25
counit of adjunction, 46
counit of comonad, 54
cpo, 72

diagram commutes, 4
diagram of type C, 16
domain, 1
downset, 72
downward closed subset, 72
downward closure, 72
duality principle, 6

e-p pair, 76
embedding, 9
embedding-projection pair, 76
epi, 6
epimorphism, 6
equality judgement in λ-calculus, 66
equalizer, 17
equalizer diagram, 17
equivalence of categories, 13
equivalent categories, 13
equivalent formulas, 39
evaluation in ccc, 63
exponents in ccc, 63

frame, 42
free group, 2
free monoid, 47
functor, 2

contravariant, 4
covariant, 4
creating limits, 60

83



faithful, 7
forgetful, 2
free, 3
full, 7
Hom, 4
preserving a property, 6
preserving limits, 22
reflecting a property, 7
representable, 4

generator, 62
group monad, 56
groupoid, 12
Grp, 2
Grph, 2

homotopy, 3

identity arrow, 1
image of a map, 31
index category of diagram, 16
initial object, 7
inverse of an arrow, 6
isomorphic objects, 7
isomorphism, 6

kernel pair of a map, 28
Kleisli category of monad, 60

labelled sequent, 35
λ-abstraction, 66
λ-calculus, 66
Lambek’s Lemma, 79
lattice, 13

distributive, 14
left adjoint functor, 45
lifting monad, 58
limit-colimit coincidence, 77
limiting cone, 16
locally continuous functor of cpo’s,

80

MacLane’s pentagon, 22
map, 1
mixed variance, 80
monad, 54
monadic, 57

mono, 5
monoid, 1
monomorphism, 5
morphism, 1
multiplication of monad, 54

natural
bijection, 9

natural numbers object, 69
natural transformation, 8

objects, 1
ω-category, 78
ω-chain, 72
ω-complete partial order, 72
ω-dieal, 72

Pos, 2
preorder, 1
primitive recursive function, 70
product category, 2
product cone, 17
product in category, 17
projections, 17
pseudo inverse of a functor, 13
pullback along a map, 32
pullback diagram, 18
pushout, 26

recursive domain equation, 72
regular epi, 27
regular logic, 32
regular mono, 20
retraction, 6
right adjoint functor, 45
Rng, 2

section, 6
solution set condition (ssc), 52
specialization ordering, 5
split epi, 6
split mono, 6
stable under pullback, 28
stably regular epi, 27
strict map of cpo’s, 74
subobject, 31

84



terminal object, 7
theory in λ-calculus, 66
theory in coherent logic, 35
Top, 2
transpose of map, 45
triangle equalities, 46

unit of adjunction, 46
unit of monad, 54

vertex of a cone, 16

Yoneda embedding, 9
Yoneda lemma, 9

85



Contents

1 Categories and Functors 1
1.1 Definitions and examples . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Some special objects and arrows . . . . . . . . . . . . . . . . . . 5

2 Natural transformations 8
2.1 The Yoneda lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Examples of natural transformations . . . . . . . . . . . . . . . . 11
2.3 Equivalence of categories; an example . . . . . . . . . . . . . . . 13

3 (Co)cones and (Co)limits 16
3.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Limits by products and equalizers . . . . . . . . . . . . . . . . . 23
3.3 Complete Categories . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 A little piece of categorical logic 28
4.1 Regular categories and subobjects . . . . . . . . . . . . . . . . . 28
4.2 The logic of regular categories . . . . . . . . . . . . . . . . . . . . 32
4.3 The language L(C) and theory T (C) associated to a regular cat-

egory C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 The category C(T ) associated to a theory T : Completeness Theorem 39
4.5 Example of a regular category . . . . . . . . . . . . . . . . . . . . 42

5 Adjunctions 45
5.1 Adjoint functors . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Expressing (co)completeness by existence of adjoints; preserva-

tion of (co)limits by adjoint functors . . . . . . . . . . . . . . . . 50

6 Monads and Algebras 54
6.1 Algebras for a monad . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 T -Algebras at least as complete as D . . . . . . . . . . . . . . . . 59
6.3 The Kleisli category of a monad . . . . . . . . . . . . . . . . . . . 60

7 Cartesian closed categories and the λ-calculus 62
7.1 Cartesian closed categories (ccc’s); examples and basic facts . . . 62
7.2 Typed λ-calculus and cartesian closed categories . . . . . . . . . 66
7.3 Representation of primitive recursive functions in ccc’s with nat-

ural numbers object . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Recursive Domain Equations 72
8.1 The category CPO . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2 The category of cpo’s with ⊥ and embedding-projection pairs;

limit-colimit coincidence; recursive domain equations . . . . . . . 76

86


