Category Theory and Topos Theory, Spring 2016 Hand-In Exercises

Jaap van Oosten

February-June 2016

1 Exercises

Exercise 1 (To be handed in February 22) The category Rel of relations has as objects sets, and an arrow $X \rightarrow Y$ is a relation from X to Y, i.e. a subset of $X \times Y$. Composition of arrows is composition of relations: given $R: X \rightarrow Y$ and $S: Y \rightarrow Z$, the composite $S R: X \rightarrow Z$ is the set

$$
S R=\{(x, z) \mid \text { for some } y \in Y,(x, y) \in R \text { and }(y, z) \in S\}
$$

a) Prove that Rel has both a terminal and an initial object, and give these explicitly.
b) Characterize the monomorphisms in Rel. Show in particular that every mono $R: X \rightarrow Y$ in Rel is a total relation: for all $x \in X$ there is a $y \in Y$ with $(x, y) \in R$.
c) Characterize the epimorphisms in Rel (Hint: you may find it useful to do part d) first).
d) Give a concrete description (up to equivalence of categories) of $\mathrm{Rel}^{\mathrm{op}}$.

Exercise 2 (To be handed in March 7) The category Set_{p} has as objects sets and as arrows partial functions: an arrow $X \rightarrow Y$ is a function f from a subset D_{f} of X to Y. Composition in Set_{p} is given as follows: for $X \xrightarrow{f} Y \xrightarrow{g} Z$ we have

$$
D_{g f}=\left\{x \in X \mid x \in D_{f} \text { and } f(x) \in D_{g}\right\}
$$

and $g f(x)=g(f(x))$ for $x \in D_{g f}$.
a) Prove that Set_{p} has finite products.
b) Prove that Set_{p} has equalizers.
c) Prove that Set_{p} has coequalizers of kernel pairs.
d) Prove that Set_{p} is regular.

Exercise 3 (To be handed in March 21) a) A meet-semilattice is a poset A which has finite limits. Concretely, it has a top element \top and for $x, y \in A$, the meet (or glb) $x \wedge y$ exists. A morphism of meet-semilattices $A \rightarrow B$ is a function which preserves \top and commutes with \wedge. We have a category MSL of meet-semilattices and their morphisms. Show that the forgetful functor MSL \rightarrow Set has a left adjoint.
b) A sup-lattice is a poset which has least upper bounds of arbitrary subsets; a suplattice homomorphism preserves least upper bounds. We have a category SL of sup-lattices; prove that the forgetful functor $\mathbf{S L} \rightarrow$ Set has a left adjoint.
c) The category Frm of frames (see section 4.5 of the lecture notes) has as objects frames and as morphisms functions which preserve arbitrary joins, top element and binary meets. Show that the forgetful functor Frm \rightarrow Set has a left adjoint.

Exercise 4 (To be handed in April 4) Let \mathcal{C} be a category, $S: \mathcal{C} \rightarrow \mathcal{C}$ a functor and (T, μ, η) a monad on \mathcal{C}. A distributive law for T over S is a natural transformation $c: T S \Rightarrow S T$ such that the following diagrams commute for each object x of \mathcal{C} :

a) Prove that a distributive law for T over S gives rise to a functor $T-S$: T - Alg $\rightarrow T$-Alg for which the following diagram commutes:

b) Prove that for the functor $T-S$ constructed in a), the law c induces a natural transformation

$$
F^{T} S \Rightarrow(T-S) F^{T}
$$

c) Conclude that in the case that c is a natural isomorphism, the functor $T-S$ restricts to an endofunctor on the Kleisli category of T.

Exercise 5 (To be handed in April 18) We compare the categories Set ${ }^{\mathcal{C}^{\text {op }}}$ and $\operatorname{Set}^{\mathcal{C}_{0}}$: the latter is just the category with as objects \mathcal{C}_{0}-indexed families of sets $\left(X_{C}\right)_{C \in \mathcal{C}_{0}}$ and as arrows \mathcal{C}_{0}-indexed families of functions. There is an obvious forgetful functor $U: \operatorname{Set}^{\mathcal{C}^{\text {op }}} \rightarrow \operatorname{Set}^{\mathcal{C}_{0}}$.
a) Prove that the functor U is monadic (that is, U has a left adjoint L such that Set ${ }^{\mathcal{C}^{\circ \mathrm{p}}}$ is equivalent to the category of $U L$-algebras).
b) Conclude from a) that "limits are calculated point-wise" in Set ${ }^{\text {opp }}$
c) Prove that U also has a right adjoint R. For 1 extra bonus-point, you may try your hand at the question: is U also comonadic?

Exercise 6 (To be handed in/sent in May 11) Let X be a topological space with set of opens $\mathcal{O}(X)$. We define, for every open U of X, a set $\operatorname{Cov}(U)$ of "covering families" for U as follows: a (downwards closed) family \mathcal{W} of open subsets of U is in $\operatorname{Cov}(U)$ if and only if there is a finite subset $\left\{W_{1}, \ldots, W_{n}\right\}$ of \mathcal{W} such that $\bigcup_{i=1}^{n} W_{i}=U$. We allow $n=0$: so $\emptyset \in \operatorname{Cov}(\emptyset)$.
a) Prove that Cov is a Grothendieck topology on $\mathcal{O}(X)$. We write $\operatorname{Sh}(\mathcal{O}(X), \operatorname{Cov})$ for the category of sheaves for this topology.
b) Let $\operatorname{Shv}(X)$ be the category of 'normal' sheaves on X, i.e. with respect to the topology where \mathcal{W} covers U iff $\bigcup \mathcal{W}=U$.
Show that $\operatorname{Shv}(X) \subset \operatorname{Sh}(\mathcal{O}(X), \operatorname{Cov})$ and that the inclusion is, in general, strict: give an example of a space X and a presheaf F on X which is a sheaf for Cov but not a normal sheaf on X.
c) Show that the inclusion $\operatorname{Shv}(X) \rightarrow \operatorname{Sh}(\mathcal{O}(X)$, $\operatorname{Cov})$ has a left adjoint which preserves finite limits.

2 Solutions

Solution to Exercise 1

a) (2 points) The empty set is initial in Rel since for any set X there is exactly one relation from \emptyset to X : the empty relation. By the same token, \emptyset is also terminal in Rel.
b) (3 points) Relations from X to Y correspond bijectively to union-preserving functions $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ (where $\mathcal{P}(X)$ denotes the power set of X): $R \subseteq X \times Y$ corresponds to the function \hat{R} defined by

$$
\hat{R}(A)=\{y \in Y \mid \exists x \in A(x, y) \in R\}
$$

Note that if $R \subseteq X \times Y$ corresponds to \hat{R} and $S \subseteq Y \times Z$ to \hat{S}, then $S R$ corresponds to the composite $\hat{S} \hat{R}$. Therefore, R is mono if and only if for any set W and $S, T \subseteq W \times X, \hat{R} \hat{S}=\hat{R} \hat{T}$ implies $S=T$. If we take $Z=\{*\}$, we see that this means that \hat{R} is injective.
The following reformulation was worth 1 bonus point: R is mono if and only if there is a function $f: X \rightarrow Y$ with the property that for all $x \in X$ the following hold:
i) $\quad(x, f(x)) \in R$
ii) For no $x^{\prime} \neq x$ is $\left(x^{\prime}, f(x)\right) \in R$

From this last condition it is obvious that if R is mono, R is a total relation. Following the hint in the exercise, we first solve part d) before we do c).
d) (3 points) For every relation R from X to Y, we have the relation $R^{\circ}=$ $\{(y, x) \mid(x, y) \in R\}$, which is a relation from Y to X, so a morphism $X \rightarrow Y$ in Rel ${ }^{\text {op }}$. Moreover, for relations $R: X \rightarrow Y$ and $S: Y \rightarrow Z$, we have $(S R)^{\circ}=$ $R^{\circ} S^{\circ}$ and of course, for the identity relation I on X we have $I^{\circ}=I$. This means that we have a functor $F: \operatorname{Rel} \rightarrow \operatorname{Rel}^{\mathrm{op}}$. Then F^{op} is a functor $\operatorname{Rel}^{\mathrm{op}} \rightarrow \operatorname{Rel}$, and it is trivial to see that the two functors are each othe's inverse. So Rel ${ }^{\text {op }}$ is isomorphic, and hence equivalent, to Rel.
c) (2 points) $R: X \rightarrow Y$ is epi in Rel if and only if R° is mono in Rel (by d)). In order to characterize this in terms of R, we use the condition given in the solution of part b$): R$ is epi if and only if there is a function $f: Y \rightarrow X$ such that for every $y \in Y$ the following hold:
i) $\quad(f(y), y) \in R$
ii) For no $y^{\prime} \neq y$ is $\left(f(y), y^{\prime}\right) \in R$.

Solution to Exercise 2 There is a straightforward solution and a slick one; let us do the straightforward solution first.
a) (3 points) The empty set is terminal in Set_{p} since for any set X the unique function f with $D_{f}=\emptyset$, is the unique partial function $X \rightarrow \emptyset$.

For sets X and Y, consider the disjoint sum $X * Y=(X \times Y)+X+Y$ together with projections $p_{X}: X * Y \rightarrow X$ and $p_{Y}: X * Y \rightarrow Y$ with $D_{p_{X}}=(X \times Y)+X$, $D_{p_{Y}}=(X \times Y)+Y$. Given two partial functions $Z \xrightarrow{f} X, Z \xrightarrow{g} Y$ we have a partial function $\langle f, g\rangle: Z \rightarrow X * Y$ defined by

$$
\langle f, g\rangle(z)=\left\{\begin{aligned}
(f(z), g(z)) \in X \times Y & \text { if } z \in D_{f} \cap D_{g} \\
f(z) \in X & \text { if } z \in D_{f}-D_{g} \\
g(z) \in Y & \text { if } z \in D_{g}-D_{f}
\end{aligned}\right.
$$

So $D_{\langle f, g\rangle}=D_{f} \cup D_{g}$. One can check that $\langle f, g\rangle$ is the unique partial function satisfying $p_{X}\langle f, g\rangle=f$ and $p_{Y}\langle f, g\rangle=g$. So $X * Y$, together with the maps p_{X} and p_{Y} is a product cone.
b) (2 points) Given a parallel pair of partial functions $X \underset{g}{\stackrel{f}{\longrightarrow}} Y$, a partial function $h: Z \rightarrow X$ satisfies $f h=g h$ if and only if for each $z \in D_{h}$ the following holds: either $h(z) \in D_{f} \cap D_{g}$ and $f(h(z))=g(h(z))$, or $h(z) \notin D_{f} \cup D_{g}$. Hence, such h factors through the inclusion $E \subset X$ where

$$
E=\left\{x \in D_{f} \cap D_{g} \mid f(x)=g(x)\right\} \cup\left(X-\left(D_{f} \cup D_{g}\right)\right)
$$

and therefore this inclusion is the equalizer of f and g.
c) (3 points) First we do general pullbacks, constructed out of products and equalizers. For a diagram

the vertex of the limiting cone is
$P=\left\{(w, z) \in D_{h} \times D_{g} \mid h(w)=g(z)\right\} \cup\left(W-D_{h}\right) \times\left(Z-D_{g}\right)+\left(W-D_{h}\right)+\left(Z-D_{g}\right)$
Hence, given $X \xrightarrow{f} Y$, the kernel pair of f has as vertex
$K_{f}=\left\{(x, y) \in D_{f} \times D_{f} \mid f(x)=f(y)\right\} \cup\left(X-D_{f}\right) \times\left(X-D_{f}\right)+\left(X-D_{f}\right)+\left(X-D_{f}\right)$
Now, if $g: X \rightarrow Z$ coequalizes the two projections $p_{1}, p_{2}: K_{f} \rightarrow X$ then for $(x, y) \in D_{f} \times D_{f}$, if $f(x)=f(y)$ then $g(x)=g(y)$. Moreover, if $x \notin D_{f}$ then $g(x)$ is undefined (because there is $\bar{x} \in K_{f}$ such that $x=p_{1}(\bar{x})$ and $p_{2}(\bar{x})$ is undefined, or vice versa). We conclude that g factors through the image of f; uniquely since $f: D_{f} \rightarrow \operatorname{Im}(f)$ is surjective.
d) (2 points) We see that a partial map $f: X \rightarrow Y$ is a regular epi in Set_{p} if and only if the function $f: D_{f} \rightarrow Y$ is surjective.

If

is a pullback diagram as in the solution of c), then it is easy to see that if h is surjective, so is p_{Z} : if $z \in D_{g}$, pick w such that $(h(w)=g(z)$; then $z=p_{Z}((w, z))$. If $z \notin D_{g}$, then $z \in\left(Z-D_{g}\right)$, hence z is also in the image of p_{Z}. We conclude that regular epis are stable under pullback. Hence Set_{p} is regular.

Slick solution: prove that Set_{p} is equivalent to the category Set_{*} of pointed sets: an object of Set_{*} is a pair (X, x) with X a set and $x \in X$; an arrow $(X, x) \rightarrow(Y, y)$ is a function $f: X \rightarrow Y$ satisfying $f(x)=y$.

Let $F: \operatorname{Set}_{p} \rightarrow \operatorname{Set}_{*}$ the functor which sends X to $(X \cup\{X\}, X)$ (mind you, set theory teaches us that $X \notin X$ always!), and a partial function $f: X \rightarrow Y$ to the function

$$
F(f)(x)=\left\{\begin{aligned}
f(x) & \text { if } x \in D_{f} \\
Y & \text { if } x \in X-D_{f} \\
Y & \text { if } x=X
\end{aligned}\right.
$$

In the converse direction we have $G: \operatorname{Set}_{*} \rightarrow \operatorname{Set}_{p}$ which sends (X, x) to $X-\{x\}$; for $f:(X, x) \rightarrow(Y, y)$ we have $G(f):(X-\{x\}) \rightarrow(Y-\{y\})$ with $D_{G(f)}=$ $\left\{x^{\prime} \in X-\{x\} \mid f(x) \neq y\right\}$. I leave the proof that this is an equivalence to you, as well as the (pretty easy) proof that Set_{*} is regular.

Solution to exercise 3.

a) (3 points) A meet-semilattice (A, \top, \wedge) can be seen as a monoid with the properties:
i) the monoid operation \wedge is commutative
ii) the operation is idempotent: $a \wedge a=a$

This means that given a set X and a function $f: X \rightarrow A$ where (A, \top, \wedge) is a meet-semilattice, its mate (under the adjunction Mon $\underset{U}{\stackrel{(\cdot)^{*}}{\leftrightarrows}}$ Set) $\tilde{f}: X^{*} \rightarrow A$ will send two sequences of elements of X to the same element of A if these sequences enumerate the same finite subset of X. We see that the left adjoint to $U:$ MSL \rightarrow Set sends a set X to the set $\mathcal{P}_{\text {fin }}(X)$ of finite subsets of X, ordered by reverse inclusion. The meet operation is union, the top element is the empty set. For a function $f: X_{\tilde{f}} \rightarrow A, \tilde{f}: \mathcal{P}_{\text {fin }}(X) \rightarrow A$ sends U to $f\left(x_{1}\right) \wedge \cdots \wedge f\left(x_{n}\right)$ if $U=\left\{x_{1}, \ldots, x_{n}\right\} ; \tilde{f}(\emptyset)=\top$.
b) (3 points) The free sup-lattice on a set X is the powerset $\mathcal{P}(X)$ of X. Given a function $f: X \rightarrow U$ where U is the underlying set of a sup-lattice, its mate is the sup-lattice homomorphism $\tilde{f}: \mathcal{P}(X) \rightarrow U$ defined by

$$
\tilde{f}(A)=\bigvee\{f(a) \mid a \in A\}
$$

c) (4 points) Every frame is a meet-semilattice (and every frame homomorphism is a meet-semilattice morphism), so there is an inclusion functor Frm \rightarrow MSL and the forgetful functor Frm \rightarrow Set factors through this inclusion. Since adjunctions compose, it is sufficient to calculate the left adjoint to the inclusion Frm \rightarrow MSL .

For any meet-semilattice A we have a frame $\mathcal{D} A$ consisting of all downwards closed subsets of A :

$$
\mathcal{D} A=\{U \subseteq A \mid \forall x, y \in A(x \in U, y \leq x \Rightarrow y \in U)\}
$$

There is a meet-semilattice morphism $A \xrightarrow{\eta} \mathcal{D} A$ sending $a \in A$ to $\downarrow a=\{x \in$ $A \mid x \leq a\}$. By definition of meets, we have $\downarrow(a \wedge b)=\downarrow a \cap \downarrow b$ (and meets in $\mathcal{D} A$ are given by intersection). And $\downarrow \top=A$, which is the top element of $\mathcal{D} A$. Moreover, for any MSL-morphism $f: A \rightarrow X$ where X is a frame, there is a unique factorization

by the frame homomorphism $\tilde{f}: \mathcal{D} A \rightarrow X$ which sends a downwards closed subset U of A to $\bigvee\{f(a) \mid a \in U\}$. So we have a functor $\mathcal{D}: \mathbf{M S L} \rightarrow \mathbf{F r m}$ which is left adjoint to the inclusion functor.

Calculating the composition of the two left adjoints Set \rightarrow MSL \rightarrow Frm, we find the functor F : Set \rightarrow Frm which sends a set X to the collection of upwards closed sets of finite subsets of X, that is: $U \in F(X)$ if and only if $U \subseteq \mathcal{P}_{\text {fin }}(X)$ and for $A, B \in \mathcal{P}_{\text {fin }}(X)$, if $A \in U$ and $A \subseteq B$, then $B \in U$. And $F(U)$ is ordered by inclusion.
(1 bonuspoint) The functor F can also be described as follows. Given a set X, the Scott topology on $\mathcal{P}(X)$ has as opens those subsets U of $\mathcal{P}(X)$ which satisfy:
i) whenever $A \subseteq B \subseteq X$ and $A \in U$, also $B \in U$
ii) whenever $A \in U$, there is a finite subset A^{\prime} of A which also belongs to U.

Then $F(X)$ is isomorphic to the frame of open subsets of $\mathcal{P}(X)$ for the Scott topology.

Solution to Exercise 4.

a) (5 points) Define $(T-S)$ on objects by: $(T-S)(T x \xrightarrow{h} x$ is the composition of

$$
T S x \xrightarrow{c_{x}} S T x \xrightarrow{S(h)} S x
$$

and on maps $f:(T x \xrightarrow{h} x) \rightarrow(T y \xrightarrow{k} y)$ by

It is clear that the diagram defining $(T-S)(f)$ commutes, that the definition is functorial, and that the diagram given in the exercise commutes; so it only remains to check that $(T-S)(T x \xrightarrow{h} x)$ is a T-algebra when h is.

Now the unit diagram

commutes since

$$
\begin{aligned}
S(h) c_{x} \eta_{S x} & =S(h) S\left(\eta_{x}\right) \\
& =S\left(h \eta_{x}\right) \\
& =S(\mathrm{id})=\mathrm{id}
\end{aligned}
$$

The first equality by naturality of c, and the second by the assumption that h is an algebra.

The associativity diagram

commutes: the left-hand square because of the second diagram defining a distributive law in a); the right-hand upper square by naturality of c, and the lower right-hand square because h is an algebra.
b) (3 points) We have that $(T-S)\left(F^{T}(x)\right)$ is the composition

$$
T S T x \xrightarrow{c_{T x}} S T^{2} x \xrightarrow{S(\mu)} S T x
$$

and the second diagram defining a distributive law just says that there is an algebra map

from $F^{T}(S x)$ to $(T-S)\left(F^{T} x\right)$, which is obviously natural.
c) (2 points) The exercise was sloppily formulated. What one can conclude from b) is that, when we apply the functor $T-S$ to a free algebra, we get something that is isomorphic to a free algebra. Therefore, the functor $T-S$ restricts to the full subcategory of $T-\mathrm{Alg}$ on those algebras that are isomorphic to a free algebra. This category is equivalent to the Kleisli category for T, but not (necessarily) isomorphic to it. If you had spotted this glitch and got stuck, you received at least 1 point.

Solution to Exercise 5.

a) (4 points) We denote a typical object of Set ${ }^{\mathcal{C}_{0}}$ by $X=\left(X_{C}\right)_{C}\left(C \in \mathcal{C}_{0}\right)$, and typical presheaves on \mathcal{C} by F, G.

So, $U(F)=(F(C))_{C}$.

For $X=\left(X_{C}\right)_{C}$, let $L(X)$ be defined by

$$
L(X)(C)=\left\{(f, \xi) \mid \operatorname{dom}(f)=C, \xi \in X_{\operatorname{cod}(f)}\right\}
$$

Then $L(X)$ is a presheaf: for $g: C^{\prime} \rightarrow C$ and $(f, \xi) \in L(X)(C)$, we let

$$
L(X)(g)(f, \xi)=(f g, \xi)
$$

Moreover, the assignment $X \mapsto L(X)$ is functorial: given an arrow $\alpha=\left(\alpha_{C}\right.$: $X_{C} \rightarrow Y_{C}$) from X to Y in $\operatorname{Set}^{\mathcal{C}_{0}}$, we have $L(\alpha): L(X) \rightarrow L(Y)$ defined by

$$
L(\alpha)_{C}(f, \xi)=\left(f, \alpha_{\operatorname{cod}(f)}(\xi)\right)
$$

This defines L as a functor.
There is a natural transformation $\varepsilon: L U \Rightarrow$ id: given a presheaf F, the component $\varepsilon_{C}^{F}: \operatorname{LUF}(C) \rightarrow F(C)$ sends (f, ξ) to $F(f)(\xi)$. This is a natural transformation: for $\alpha: F \rightarrow G$ we have

$$
\begin{aligned}
\varepsilon_{C}^{G}\left(L U(\alpha)_{C}(f, \xi)\right) & =\varepsilon_{C}^{G}\left(f, \alpha_{\operatorname{cod}(f)}(\xi)\right) \\
G(f)\left(\alpha_{\operatorname{cod}(f)}(\xi)\right) & = \\
\alpha_{C}\left(\varepsilon_{C}^{F}(f, \xi)\right) &
\end{aligned}
$$

so the diagram

commutes.
There is a natural transformation η : id $\Rightarrow U L$: given X, we have $\eta_{C}: X_{C} \rightarrow$ $U L(X)_{C}$ defined by

$$
\eta_{C}(\xi)=\left(\operatorname{id}_{C}, \xi\right) \in L U(X)_{C}
$$

The naturality of η is obvious. We check the triangle equalities:

For a presheaf F and $\xi \in(U F)_{C}=F(C)$, we have $(\eta \star U)_{C}(\xi)=\left(\operatorname{id}_{C}, \xi\right)$ and $(U \circ \varepsilon)_{C}\left(\mathrm{id}_{C}, \xi\right)=F\left(\mathrm{id}_{C}\right)(\xi)=\xi$, so the left-hand triangle commutes.

For X in $\operatorname{Set}^{\mathcal{C}_{0}}$) and $(f, \xi) \in L(X)(C),(L \star \eta)(f, \xi)=\left(\operatorname{id}_{C},(f, \xi)\right)$ and

$$
\begin{aligned}
(\varepsilon \star L)_{C}\left(\mathrm{id}_{C},(f, \xi)\right) & =L(X)\left(\mathrm{id}_{C}\right)(f, \xi)= \\
\left(f \mathrm{id}_{C}, \xi\right) & =(f, \xi)
\end{aligned}
$$

so also the right-hand triangle commutes. We conclude that indeed, L is left adjoint to U.

Consider the monad $T=U L$ on $\operatorname{Set}^{\mathcal{C}^{\text {op }}}: T(X)_{C}=\{(f, \xi) \mid \operatorname{dom}(f)=C, \xi \in$ $\left.X_{\operatorname{cod}(f)}\right\}$, so

$$
T^{2}(X)_{C}=\left\{(g,(f, \xi)) \mid \operatorname{dom}(g)=C, \operatorname{cod}(g)=\operatorname{dom}(f), \xi \in X_{\operatorname{cod}(f)}\right\}
$$

The multiplication $\mu: T^{2} \Rightarrow T$ is given by $(g,(f, \xi))=(f g, \xi)$, and the unit η is the unit of the adjunction $L \dashv U$.

Now suppose X is a T-algebra: we have $h: T(X) \rightarrow X$ such that the diagrams

commute.
These diagrams mean that $h_{C}(f, \xi) \in X_{C}$ for all C, and for $C \xrightarrow{g} C^{\prime} \xrightarrow{f} D$ and $\xi \in X_{D}$ we have the equalities

$$
h_{C}\left(g, h_{C^{\prime}}(f, \xi)\right)=h_{C}(f g, \xi) h_{C}\left(\operatorname{id}_{C}, \xi\right)=\xi
$$

These equations just mean that X has a presheaf structure if, for $\xi \in X_{D}$ and $f: C \rightarrow D$ we put $X(f)(\xi)=h_{C}(f, \xi)$. Conversely, every structure of a presheaf on X defines a T-algebra structure on X. We see that $\mathrm{Set}^{{ }^{\text {cop }}}$ is equivalent to the category T - Alg , and that U is monadic.
b) (2 points) In Set ${ }^{\mathcal{C}_{0}}$, limits are pointwise (a diagram in $\operatorname{Set}^{\mathcal{C}_{0}}$ is just a $\mathcal{C}_{0^{-}}$ indexed family of diagrams in Set).

Since U is monadic, it creates limits: for any diagram $P: I \rightarrow \operatorname{Set}^{\mathcal{C}_{0}}$, i.e. family of diagrams $\left(P_{C}: I \rightarrow \operatorname{Set}\right)_{C \in \mathcal{C}_{0}}$ with limits Λ_{C}, there is a unique presheaf structure on Λ_{C}, and this is the vertex of a limiting cone for P. So, limits are calculated pointwise.
c) (4 points) Given an object X of $\operatorname{Set}^{\mathcal{C}_{0}}$, define $R(X)$ as follows: $R(X)(C)$ consists of all families

$$
\left(\xi_{f}\right)_{\operatorname{cod}(f)=C}
$$

for which $\xi_{f} \in X_{\operatorname{dom}(f)}$, for all f with codomain C.
Then $R(X)$ is a presheaf if we define, for $g: C^{\prime} \rightarrow C$,

$$
R(X)(g)\left(\left(\xi_{f}\right)_{\operatorname{cod}(f)=C}\right)=\left(\xi_{g h}\right)_{\operatorname{cod}(h)=C^{\prime}}
$$

For $\alpha: X \rightarrow Y$ in Set $^{\mathcal{C}_{0}}$ we have $R(\alpha): R(X) \rightarrow R(Y)$ given by

$$
R(\alpha)_{C}\left(\left(\xi_{f}\right)_{\operatorname{cod}(f)=C}\right)=\left(\alpha_{\operatorname{dom}(f)}\left(\xi_{f}\right)\right)_{\operatorname{cod}(f)=C}
$$

This defines R as a functor: $\operatorname{Set}^{\mathcal{C}_{0}} \rightarrow \operatorname{Set}^{\mathcal{C}^{\text {op }}}$.
We have a natural transformation η : id $\Rightarrow R U$: for a presheaf F, define η_{C} on $F(C)$ by

$$
\eta_{C}(\xi)=(F(f)(\xi))_{\operatorname{cod}(f)=C}
$$

Also, we have a natural transformation $\varepsilon: U R \Rightarrow \mathrm{id}$: for an object X of $\operatorname{Set}^{\mathcal{C}_{0}}$, ε_{C} sends the family $\left(\xi_{f}\right)_{\operatorname{cod}(f)=C}$ to $\xi_{\text {id }_{C}} \in X_{C}$.

Again, we check the triangle equalities

For the left-hand triangle, if $\xi=\left(\xi_{f}\right)_{\operatorname{cod}(f)=C}$ is an element of $R(X)(C)$ then $(\eta \star R)_{C}(\xi)$ is the family of families $\left(A_{f}\right)_{\operatorname{cod}(f)=C}$, where, for $f: C^{\prime} \rightarrow C$,

$$
A_{f}=\left(\xi_{f g}\right)_{\operatorname{cod}(g)=C^{\prime}}
$$

And

$$
\begin{aligned}
(R \circ \varepsilon)_{C}\left(\left(A_{f}\right)_{\operatorname{cod}(f)=C}\right) & =\left(\varepsilon_{C^{\prime}}\left(A_{f}\right)\right)_{f: C^{\prime} \rightarrow C} \\
\left(\xi_{f}\right)_{f: C^{\prime} \rightarrow C} & =\xi
\end{aligned}
$$

so the left-hand triangle commutes. Virtually the same calculation shows that the right-hand triangle commutes; we conclude that R is right adjoint to U.

For the last statement (1 bonus point), we look at the comonad $\Perp=U R$ on Set ${ }^{\mathcal{C}_{0}}$. We have the counit $\varepsilon: \Perp \Rightarrow$ id, which is the counit of the adjunction $U \dashv R$, and a comultiplication $\delta: \Perp \Rightarrow \Perp^{2}$, which is $U \circ(\eta \star R)$.

A \Perp-coalgebra in $\operatorname{Set}^{\mathcal{C}_{0}}$ is an object X together with a morphism $h: X \rightarrow$ $\Perp X$, making the diagrams

commute.
So we have a map h such that in particular, for $\xi \in X_{C}, h_{C}(\xi)$ is a family $\left(\zeta_{f}\right)_{f: C^{\prime} \rightarrow C}$ such that (by the right-hand triangle) $\zeta_{\text {id }}=\xi$.

For $f: C^{\prime} \rightarrow C$ let us denote $\zeta_{f}=\left(h_{C}(\xi)\right)_{f}$ by $X(f)(\xi)$. By the above paragraph, $X\left(\operatorname{id}_{C}\right)(\xi)=\xi$. So $h_{C}(\xi)=(X(f)(\xi))_{\operatorname{cod}(f)=C}$ whence

$$
(\Perp h)_{C}\left(h_{C}(\xi)\right)=\left((X(g)(X(f)(\xi)))_{g: C^{\prime \prime} \rightarrow C^{\prime}}\right)_{f: C^{\prime} \rightarrow C}
$$

and

$$
\delta_{C}\left(h_{C}(\xi)\right)=\left(X(f g)(\xi)_{g: C^{\prime \prime} \rightarrow C^{\prime}}\right)_{f: C^{\prime} \rightarrow C}
$$

From this we see that the requirement that the left-hand diagram commute, just means that

$$
X(f g)(\xi) \quad X(g)(X(f)(\xi))
$$

always; that is, X is a presheaf. We conclude that U is in fact comonadic (and, hence, creates colimits; which are, thus, calculated pointwise in Set ${ }^{\text {cop }}$).

