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1 Exercises

Exercise 1 (To be handed in February 19) A Forest is a partially ordered
set (F,<) such that for any x ∈ F , the set F<x = {y ∈ F | y < x} is a finite
linear order. The cardinality of F<x is called the level of x. A morphism of
forests F → G is an order-preserving and level-preserving function. Clearly, we
have a category of forests F .

a) A tree is a forest which has exactly one element of level 0 (the root of the
tree. Let T be the full subcategory (i.e. having the same morphisms) of F
on the trees. Show that the categories F and T are equivalent. Are they
isomorphic? Motivate your answer.

b) Show that the category F is isomorphic to a category of the form SetC
op

for a suitable small category C.

c) A forest F is called well-founded is there is no infinite sequence

x0 < x1 < x2 < · · ·

in F . Give a purely category-theoretic property which characterizes the
well-founded forests in F .

Exercise 2 (To be handed in March 5) a) Consider the following dia-
gram:

A

a

��

e0 // B

b
��

f0 //

g0
// C

c

��

A′
e1
// B′

f1 //

g1
// C
′

where we assume that the horizontal rows are equalizer diagrams, that
cf0 = f1b, cg0 = g1b, the left hand square commutes and the arrow c is
monic. Prove that the left-hand square is a pullback.
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b) Let C be a small category and C an object of C; consider the functor
C(C,−) : C → Set. Prove that this functor preserves all limits which exist
in C.

Exercise 3 (To be handed in March 19) Throughout, we assume a regu-
lar category C.

a) Show that an arrow g : X → Y is a regular epi precisely if the following
condition holds: for every commutative diagram

X
b //

g

��

A

m

��

Y
a
// B

with m mono, there is a unique arrow h : Y → A such that mh = a and
hg = b.

b) Use part a) to show that for any composable pair A
g→ B

f→ C of arrows
of C we have: if fg is regular epi, then so is f .

c) For any arrow f : X → Y in C we define the graph of f as the subobject
of X × Y represented by the mono 〈idX , f〉 : X → X × Y .

Suppose X,Y, Z are objects of C, g : Z → Y is a regular epi and R ∈
Sub(X × Y ). Let S = (idX × g)∗(R) ∈ Sub(X × Z). Assume that the
following two sequents of regular logic are true, with the evident interpre-
tation:

`x ∃zS(x, z)
S(x, z) ∧ S(x, z′) `x,z,z′ z = z′

Prove that there is an arrow f : X → Y such that R is the graph of f .

Exercise 4 (To be handed in April 9) Let D
G
// C

Foo be an adjunction with

F a G and G full and faithful. We denote the induced monad GF on C by T .

a) Prove that µ (the multiplication of the monad) is a natural isomorphism.

b) Is the functor G monadic? Justify your answer.

Exercise 5 (To be handed in April 23) Let X be a presheaf on a small
category C and let Y be a subpresheaf of X. We see X as a structure for
ther language which has just one unary relation symbol R, and [[R ]] = Y .

a) Prove that the following three conditions are equivalent:

i) The sentence ∀x¬¬R(x) is true in the structure X.

ii) For every C ∈ C0, every ξ ∈ X(C) and every arrow g : C ′ → C in C,
there is an arrow h : C ′′ → C ′ such that X(gh)(ξ) ∈ Y (C ′′).
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iii) For every subpresheaf Z of X which is not the initial presheaf, the
intersection Y ∩ Z is not the initial presheaf.

If these conditions hold then Y is said to be a dense subpresheaf of X.

b) Assume that C is a groupoid (all arrows are isomorphisms). Show that
the only dense subpresheaf of X is X itself.

Exercise 6 (May be handed in digitally until May 9, midnight) In a cat-
egory C with pullbacks, a partial map classifier for an object X is a monomor-
phism ζX : X → X̃ with the property that for any mono m : A→ B and arrow
f : A → X (this is regarded as a partial map from B to X) there is a unique
arrow f̄ : B → X̃ which makes the diagram

A
f
//

m

��

X

ζX
��

B
f̄

// X̃

a pullback.

a) (4 points) Suppose for every object X of C there is a partial map classifier.

Show that there is a functor (̃·) : C → C and a natural transformation

ζ : idC ⇒ (̃·) such that for every object X of C, the arrow ζX : X → X̃ is
a partial map classifier for X.

b) (6 points) Let X be a topological space; we consider the category Sh(X)
of sheaves over X. Given such a sheaf F , we denote the action of F on
inclusions U ⊆ V (the morphisms in the category of open sets of X) by �:
for x ∈ F (V ) we write x�U for F (U ⊆ V )(x). Now we define F̃ as follows:

F̃ (V ) = {(U, x) |U ⊆ V, x ∈ F (U)}

and for V ′ ⊆ V , we define (U, x)�V ′ to be (U ∩V ′, x�(U ∩V ′)). Show that
there is a natural map F → F̃ in Sh(X) which is a partial map classifier
for F .

c) (2 bonus points) Can you generalize the construction in b) to toposes of
the form Sh(C,Cov)?

2 Solutions

Solution to Exercise 1.

a) Define functors F :W → T and G : T → W as follows: given a forest W ,
add a new bottom element to this poset, obtaining F (W ). For a morphism
f : W → W ′ we have F (f) : F (W ) → F (W ′) which is f when restricted
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to W , and sends the bottom element to the bottom element of F (W ′).
Note that the level of each element of W is 1 higher in F (W ) than in W .
In the other direction, given a tree T , G(T ) = T −{r} where r is the root
of T . Here the levels get 1 lower, when we pass from T to G(T ). The
definition of G on arrows is left to you. It is not hard to prove that F and
G are functors. Clearly, G(F (W )) = W , and F (G(T )) is isomorphic to T .
The isomorphism is natural, because it is the identity except for the root.

The categories W and T cannot be isomorphic: look at initial objects
in both categories. In T , every singleton set is initial; but in W there is
exactly one initial object, the empty set. Since every isomorphism induces
a bijection between the collections of initial objects, we cannot have an
isomorphism.

b) Well. . . there was a difficulty in this exercise I wasn’t fully aware of! The
idea was: we take the poset N for C. For a functor X : Nop → Set, we
define the posetG(X) as the set of pairs (n, x) satisfying x ∈ X(n). We put
(n, x) ≤ (m, y) iff n ≤ m and Xnm(y) = x (where Xnm : X(m) → X(n)
is the action of the functor X on the arrow n ≤ m). It is easy to convince
oneself that G(X) is a forest. Conversely, given a forest W one has a
functor F (W ) : Nop → Set by putting: F (W )(m) is the set of elements of
W of level m. If n ≤ m and x ∈ F (W )(m), then there is a unique element
of level n which is≤ x; we define the action of F (W ) on arrows accordingly.
It is also straightforward that for a forest W , F (G(W )) is isomorphic to
W and that for a functor X, G(F (X)) is isomorphic to X. So the pair
F,G is an equivalence. However, it is not an isomorphism! Forests, being
defined as posets, have the property that the level-sets (sets of elements
of the same level) are pairwise disjoint. Functors X : Nop → Set do not
have the property that X(n) is disjoint from X(m) if n 6= m! In short, we

need an isomorphism between the category SetN
op

and its full subcategory
on the functors X for which the sets X(n) are pairwise disjoint. There
is a solution to this, but it seems to involve a bit of the foundations of
category theory. . .

Consider N-indexed sequences of cardinal numbers κ = (κn)n∈N. For each
such κ, letAκ be the class of N-indexed families of setsX = (Xn)n∈N which
satisfy |Xn| = κn for each n. Let Bκ be the subclass of Aκ consisting of
those X which moreover satisfy Xn ∩ Xm = ∅ for n 6= m. There is
an injective operation from Aκ to Bκ, for example send X to the family
({(x, n) |x ∈ Xn})n∈N. By the Cantor-Schröder-Bernstein theorem (which
also holds for classes), there is a bijection Fκ : Aκ → Bκ for each κ. Now
we need a large axiom of choice (which is available if our category Set is
“small” in some universe) to assign to any N-indexed family X a sequence
of bijections fn : Xn → Fκ(X)n (where κ = (|Xn|)n∈N).

Now, for an object X of SetN
op

, we have its underlying N-indexed family
(also denoted X, or (Xn)n∈N), and the action on arrows Xnm : Xm → Xn

for n ≤ m. We define the structure of a functor Nop → Set on Fκ(X) by
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putting
Fκ(X)nm(y) = fn(Xnm(f−1

m (y)))

and for an arrow µ : X ⇒ Y (where we have assigned (fn)n : Xn →
Fκ(X)n to X and (gn)n : Yn → Fλ(Y )n to Y ), we define an arrow G(µ) :
Fκ(X)→ Fλ(Y ) by

G(µ)n(x) = gn(µn(f−1
n (x)))

One has to check that G(µ) is indeed a natural transformation, and that

the assignment G which sends every object X of SetN
op

to the functor
Fκ(X) defined above and every µ to G(µ), is indeed a functor; this is

straightforward. We now have the desired isomorphism from SetN
op

to its
full subcategory on the “pairwise disjoint” functors.

c) There is the tree N, and it is clear that a forest F is well-founded if and
only if there is no morphism of forests N→ F . The forest N is the terminal
object of F ; so a forest is well-founded if and only if it admits no arrow
from the terminal object to itself.

Solution to Exercise 2.

a) Suppose that the diagram

X
k //

h
��

B

b
��

A′
e1
// B′

commutes. Then f1bk = f1e1h = g1e1h = g1bk, so cf0k = f1bk = g1bk =
cg0k. Since c is mono, we have f0k = g0k, and by the equalizer property
of e0 we find that k factors uniquely through e0 by a map n : X → A.
Then e1an = be0n = bk = e1h, so since e1 is mono, we have an = h. We
conclude that the left hand square in the exercise is a pullback.

b) Suppose F : I → C is a diagram and (D,µ) is a limiting cone for F in C.
Composition with C(C,−) : C → Set gives a diagram G(i) = C(C,F (i)) in
Set, where, for f : i→ j in I, G(f) : C(C,F (i))→ C(C,F (j)) is given by
composition with F (f).

If X is a set and ν : ∆X ⇒ G a natural transformation then for each
x ∈ X and i ∈ I0 we have νi(x) : C → G(i) and for f : i→ j the diagram

C
νi(x)

//

νj(x)
))SS

SSSS
SSSS

SSSS
SSS G(i) = C(C,F (i))

G(f)

��

G(j) = C(C,F (j))
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So for every x ∈ X we have a cone ρ(x) in C with vertex C. Since
(D,µ) is limiting, we have a unique map of cones ρ(x) → (D,µ); that
is, for each x ∈ X an arrow C → D in C. We conclude that the cone

C(C,D)
C(C,µ)−→ C(C,F ) is limiting in Set.

Solution to Exercise 3.

a) First, suppose g is regular epi. The uniqueness of the required arrow
h : Y → A is immediate from the assumption that m is mono, so we
prove that such h exists. For the arrows a and b, choose regular epi-mono
factorizations a = m1e1, b = m2e2. Using Proposition 4.3ii), we have
that both m1(e1g) and (mm2)e2 are regular epi-mono factorizations of
the composition ag:

X

g

��

e2 // Z2
m2 // A

m

��

Y
e1
// Z1 m1

// B

By the essential uniqueness of the regular epi-mono factorization, there is
an isomorphism σ : Z1 → Z2 satisfying e2 = σe1g and mm2σ = m1. Then
m2σe1 : Y → A is the required diagonal filler.

Conversely, suppose such a diagonal filler always exists for any diagram
meeting the specifications of the exercise. We have to prove that g is
regular epi. Let X

e→ Z
m→ Y be the regular epi-mono factorization. Since

the diagram

X

g

��

e // Z

m

��

Y
id
// Y

commutes and m is mono, there is a unique h : Y → Z with mh = idY
and hg = e. Now mhm = idYm = midZ so since m is mono, hm = idZ .
We see that h is an inverse for m, so g is regular epi.

b) Let A
g→ B

f→ C be arrows such that fg is regular epi. To show: f
is regular epi. We use the criterion of part a), so suppose we have a
commutative diagram

B

f

��

b // A

m

��

C
a
// B
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Compose this with g to obtain:

A

g

��

bg
// A

id
��

B

f

��

b // A

m

��

C
a
// B

Since fg is regular epi we have a unique h : C → A such that mh = a and
hfg = bg. Then mhf = af = mb whence, since m is mono, hf = b; this
means that h is also a diagonal filler for the original diagram.

c) This part requires some more work. The first thing to notice is, that a
subobject R of X × Y is tha graph of some f : X → Y if and only if the
composition R→ X × Y → X is an isomorphism. I leave this to you. We
also use the fact that an arrow is an isomorphism if and only if it is both
mono and regular epi.

We consider the subobjects [[S(x, z) ]], [[S(x, z′) ]] and [[ z = z′ ]] of X×Z×
Z. We have the projections π12 : X ×Z ×Z → X ×Z (projection on the
first and second coordinate) and π13 : X × Z × Z → X × Z. We have:
[[S(x, z) ]] = π∗12(S) and [[S(x, z′) ]] = π∗13(S), and [[S(x, z) ∧ S(x, z′) ]] =
π∗12(S)∧ π∗13(S) (the second ∧ means: the meet in Sub(X ×Z ×Z)). The
assumption that the sequent S(x, z)∧ S(x, z′) `x,z,z′ z = z′ is true means
that

π∗12(S) ∧ π∗13(S) ≤ [[ z = z′ ]] in Sub(X × Z × Z)

Here [[ z = z′ ]] is the subobject of X × Z × Z represented by the map
idX × δ : X × Z → X × Z × Z, where δ : Z → Z × Z is the diagonal.

Furthermore we notice that for S ∈ Sub(X ×Z) the sequent `x ∃zS(x, z)
is true if and only if S → X is regular epi. Indeed, this sequent is true if
and only if ∃πX

(S) is the top element of Sub(X) (where πX : X ×Z → X
is the projection), that is: if and only if the composition S → X×Z → X
is regular epi.

Now suppose 〈iX , iY 〉 : R → X × Y represents the subobject R and
〈u, v〉 : S × X → Z represents S. We wish to show that iX : R → X is
an isomorphism. Because the map u : S → X is regular epi and it factors
through iX , by part b) of the exercise we know that iX is regular epi.
Therefore we have to see that iX is mono.

Let V
f
//

h
// R be a parallel pair such that iXf = iXh. Consider the

map

a = 〈iXf, iY f, iY h〉 = 〈iXh, iY f, iY h〉 : V → X × Y × Y
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and consider the pullback

W

b

��

c // V

a

��

X × Z × Z
idX×g×g

// X × Y × Y

Writing q12, q13 for the projections X × Y × Y → X × Y , we see that the
map a factors through q∗12(R) ∧ q∗13(R), and therefore the map b factors
through π∗12(S) ∧ π∗13(S). It follows from what we have seen before, that
b factors through the subobject idX × δ : X × Y → X × Y × Y , and this
means that π12b = π13b. Now we get

q12ac = 〈idX × g〉π12b = 〈idX × g〉π13b = q13ac.

Because c is regular epi, q12a = q13a. But this means that f = h. This
concludes the proof that iX is mono, and the exercise.

Solution to Exercise 4.

a) The multiplication of the monad GF has components

µC = G(εF (C)) : GFGF (C)→ GF (C).

So in order to prove that µ is a natural isomorphism, it suffices to show
that ε is a natural isomorphism. We prove that ε is both epi and split
mono.

Consider a diagram FG(D)
εD // D

f
//

g
// D′ inD such that fεD = gεD.

Then their transposes along F a G are equal, which means G(f) = G(g).
Since G is faithful, we have f = g. We conclude that εD is epi.

Now, we prove that ε is split mono. Since G is full, we have an arrow
α : D → FG(D) such that G(α) = ηG(D) : G(D) → GFG(D). The

composition FG(D)
εD−→ D

α−→ FG(D) transposes to G(α) = ηG(D),
which is also the transpose of the identity on FG(D). We conclude that
αεD is the identity on FG(D), so εD is split mono.

b) The answer is yes. Suppose h : GF (D) → D is a T -algebra. Then
hηD = idD. We consider

ηDh : GF (D)→ GF (D)

Since G is full, there is an arrow β : F (D)→ F (D) such that G(β) = ηDh.
The transpose of β is G(β)ηD : D → GF (D), which by choice of β is equal
to ηDhηD = ηD, which is also the transpose of idF (D). We conclude that
β = idF (D), so

ηDh = G(β) = G(idF (D)) = idGF (D).
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We see that h is a 2-sided inverse of ηD. So there is at most one T -algebra
structure on an object D of D. I leave it to you to prove that there is at
least one, too, and to conclude that T −Alg is equivalent to D.

Solution to Exercise 5.

a) i)⇔ii): this is just working out the definition.

ii)⇒iii): suppose Z is a nonempty subpresheaf of X; suppose ξ ∈ Z(C).
Taking the identity on C for g in ii), we see that for some h : C ′ → C
we have X(h)(ξ) ∈ Y (C ′). Since Z is a subpresheaf of X, X(h)(ξ) ∈
Y (C ′) ∩ Z(C ′), therefore Y ∩ Z is nonempty.

iii)⇒ii): suppose ξ ∈ X(C), g : C ′ → C. Consider the subpresheaf Z of
X generated by X(g)(ξ): Z(C ′′) = {X(gh)(ξ) |h : C ′′ → C ′}. Then Z is
nonermpty. By iii), Z ∩Y is nonempty, so there is some h : C ′′ → C ′ such
that X(gh)(ξ) ∈ Y (C ′′); i.e., ii) holds.

b) Suppose Y ⊆ X is dense, and ξ ∈ X(C). For some h : C ′ → C
we have X(h)(ξ) ∈ Y (C ′). Now if h is an isomorphism, we find that
X(h−1)(X(h)(ξ)) ∈ Y (C), that is: ξ ∈ Y (C). So Y = X.

Solution to Exercise 6.

a) Choosing for each object X of C a partial map classifier ζX : X → X̃, we

have an assignment (̃·) on objects. In order to see that (̃·) can be extended
to a functor, use the defining property of ζX on arrows f : X → Y : let
f̃ : X̃ → Ỹ be the unique arrow making the square

X
f
//

ζX
��

Y

ζY
��

X̃
f̃

// Ỹ

a pullback (note, that f is a partial map from X̃ to Y ).

If f = idX , then clearly f̃ = idX̃ since this turns the relevant square into
a pullback. Similarly, for g : Y → Z we have that the outer square of the
composite diagram

X

ζX
��

f
// Y

ζY
��

g
// Z

ζZ
��

X̃
f̃

// Ỹ
g̃
// Z̃

is a pullback; hence g̃f̃ = g̃f by uniqueness. So (̃·) is a functor, and

ζ : idC ⇒ (̃·) is a natural transformation.
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b) First we need to see that F̃ as defined in part b) is indeed a sheaf on
X. So, suppose we have a compatible family in F̃ at some open U ⊆ X,
indexed by a covering sieve. That is, we have an open cover (Ui)i∈I of
U and elements (Vi, xi) of F̃ (Ui). Hence Vi ⊆ Ui and xi ∈ F (Vi). That
this is a compatible family in F̃ at U , means that for i, j ∈ I we have
xi�Vi∩Vj = xj�Vi∩Vj . We see that the family (xi)i∈I is a compatible
family in F at

⋃
i∈I Vi. Since F is a sheaf, this family has a unique

amalgamation x ∈ F (V ) where V =
⋃
i∈I Vi. Now the pair (V, x) ∈ F̃ (U)

is the uniqwue amalgamation of the original family; we conclude that F̃
is a sheaf.

Clearly, we have a natural transformation ζF : F → F̃ , defined by

(ζF )U (x) = (U, x).

Now suppose G is a sheaf on the space X, H ⊆ G a subsheaf and µ : H →
F a morphism of sheaves. We define µ̄ : G→ F̃ as follows: for x ∈ G(U)
let µ̄U (x) be (V, y) where

V =
⋃
{W ⊆ U |x�W ∈ H(W )}

and y ∈ F (V ) is µV (x�V ) (check that x�V ∈ H(V )). This is the only
option for µ̄, and the pullback property is left to you to check.

c) [Sketch.] Now let G be a sheaf on a site (C, J). For a subsheaf H of G, an
object C of C and x ∈ G(C), the sieve

Rx = {f : C ′ → C |G(f)(x) ∈ H(C ′)}

is closed, since H is a subsheaf. Therefore, if F is a sheaf and µ : H → F
a map of sheaves, for each x ∈ G(C) we have a closed sieve Rx on C and
an arrow Rx → F .

So we define F̃ (C) to be the set of pairs (R, ξ) where R is a closed sieve on
C and ξ a morphism R→ F (i.e., a compatible family in F at C, indexed
by the closed sieve R). The rest is analogous to the case in b) and left to
you.
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