Category Theory and Topos Theory, Spring 2018 Hand-In Exercises

Jaap van Oosten

February–June 2016

1 Exercises

Exercise 1 (To be handed in February 19) A Forest is a partially ordered set (F, <) such that for any $x \in F$, the set $F_{<x} = \{y \in F \mid y < x\}$ is a finite linear order. The cardinality of $F_{<x}$ is called the *level* of x. A morphism of forests $F \to G$ is an order-preserving and level-preserving function. Clearly, we have a category of forests \mathcal{F} .

- a) A *tree* is a forest which has exactly one element of level 0 (the *root* of the tree. Let \mathcal{T} be the full subcategory (i.e. having the same morphisms) of \mathcal{F} on the trees. Show that the categories \mathcal{F} and \mathcal{T} are equivalent. Are they isomorphic? Motivate your answer.
- b) Show that the category \mathcal{F} is isomorphic to a category of the form $\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$ for a suitable small category \mathcal{C} .
- c) A forest F is called *well-founded* is there is no infinite sequence

 $x_0 < x_1 < x_2 < \cdots$

in \mathcal{F} . Give a purely category-theoretic property which characterizes the well-founded forests in \mathcal{F} .

Exercise 2 (To be handed in March 5) a) Consider the following diagram:

where we assume that the horizontal rows are equalizer diagrams, that $cf_0 = f_1 b$, $cg_0 = g_1 b$, the left hand square commutes and the arrow c is monic. Prove that the left-hand square is a pullback.

b) Let \mathcal{C} be a small category and C an object of \mathcal{C} ; consider the functor $\mathcal{C}(C, -) : \mathcal{C} \to \text{Set}$. Prove that this functor preserves all limits which exist in \mathcal{C} .

Exercise 3 (To be handed in March 19) Throughout, we assume a regular category C.

a) Show that an arrow $g: X \to Y$ is a regular epi precisely if the following condition holds: for every commutative diagram

with m mono, there is a unique arrow $h: Y \to A$ such that mh = a and hg = b.

- b) Use part a) to show that for any composable pair $A \xrightarrow{g} B \xrightarrow{f} C$ of arrows of C we have: if fg is regular epi, then so is f.
- c) For any arrow $f: X \to Y$ in \mathcal{C} we define the graph of f as the subobject of $X \times Y$ represented by the mono $\langle \operatorname{id}_X, f \rangle : X \to X \times Y$.

Suppose X, Y, Z are objects of $C, g : Z \to Y$ is a regular epi and $R \in$ Sub $(X \times Y)$. Let $S = (\mathrm{id}_X \times g)^*(R) \in$ Sub $(X \times Z)$. Assume that the following two sequents of regular logic are true, with the evident interpretation:

$$\vdash_x \exists z S(x, z) \\ S(x, z) \land S(x, z') \vdash_{x, z, z'} z = z$$

Prove that there is an arrow $f: X \to Y$ such that R is the graph of f.

Exercise 4 (To be handed in April 9) Let $\mathcal{D} \xleftarrow{F}_{G} \mathcal{C}$ be an adjunction with

- $F\dashv G$ and G full and faithful. We denote the induced monad GF on ${\mathcal C}$ by T.
- a) Prove that μ (the multiplication of the monad) is a natural isomorphism.
- b) Is the functor G monadic? Justify your answer.

Exercise 5 (To be handed in April 23) Let X be a presheaf on a small category C and let Y be a subpresheaf of X. We see X as a structure for ther language which has just one unary relation symbol R, and $[\![R]\!] = Y$.

- a) Prove that the following three conditions are equivalent:
 - i) The sentence $\forall x \neg \neg R(x)$ is true in the structure X.
 - ii) For every $C \in \mathcal{C}_0$, every $\xi \in X(C)$ and every arrow $g: C' \to C$ in \mathcal{C} , there is an arrow $h: C'' \to C'$ such that $X(gh)(\xi) \in Y(C'')$.

iii) For every subpresheaf Z of X which is not the initial presheaf, the intersection $Y \cap Z$ is not the initial presheaf.

If these conditions hold then Y is said to be a *dense* subpresheaf of X.

b) Assume that C is a groupoid (all arrows are isomorphisms). Show that the only dense subpresheaf of X is X itself.

Exercise 6 (May be handed in digitally until May 9, midnight) In a category \mathcal{C} with pullbacks, a *partial map classifier* for an object X is a monomorphism $\zeta_X : X \to \tilde{X}$ with the property that for any mono $m : A \to B$ and arrow $f : A \to X$ (this is regarded as a *partial map* from B to X) there is a unique arrow $\bar{f} : B \to \tilde{X}$ which makes the diagram

a pullback.

- a) (4 points) Suppose for every object X of C there is a partial map classifier. Show that there is a functor $(\widetilde{\cdot}) : \mathcal{C} \to \mathcal{C}$ and a natural transformation $\zeta : \operatorname{id}_{\mathcal{C}} \Rightarrow (\widetilde{\cdot})$ such that for every object X of C, the arrow $\zeta_X : X \to \tilde{X}$ is a partial map classifier for X.
- b) (6 points) Let X be a topological space; we consider the category Sh(X) of sheaves over X. Given such a sheaf F, we denote the action of F on inclusions $U \subseteq V$ (the morphisms in the category of open sets of X) by \uparrow : for $x \in F(V)$ we write $x \mid U$ for $F(U \subseteq V)(x)$. Now we define \tilde{F} as follows:

$$\tilde{F}(V) = \{(U, x) \mid U \subseteq V, x \in F(U)\}$$

and for $V' \subseteq V$, we define $(U, x) \upharpoonright V'$ to be $(U \cap V', x \upharpoonright (U \cap V'))$. Show that there is a natural map $F \to \tilde{F}$ in Sh(X) which is a partial map classifier for F.

c) (2 bonus points) Can you generalize the construction in b) to toposes of the form $Sh(\mathcal{C}, Cov)$?

2 Solutions

Solution to Exercise 1.

a) Define functors $F: \mathcal{W} \to \mathcal{T}$ and $G: \mathcal{T} \to \mathcal{W}$ as follows: given a forest W, add a new bottom element to this poset, obtaining F(W). For a morphism $f: W \to W'$ we have $F(f): F(W) \to F(W')$ which is f when restricted to W, and sends the bottom element to the bottom element of F(W'). Note that the level of each element of W is 1 higher in F(W) than in W. In the other direction, given a tree T, $G(T) = T - \{r\}$ where r is the root of T. Here the levels get 1 lower, when we pass from T to G(T). The definition of G on arrows is left to you. It is not hard to prove that F and G are functors. Clearly, G(F(W)) = W, and F(G(T)) is isomorphic to T. The isomorphism is natural, because it is the identity except for the root.

The categories \mathcal{W} and \mathcal{T} cannot be isomorphic: look at initial objects in both categories. In \mathcal{T} , every singleton set is initial; but in \mathcal{W} there is exactly one initial object, the empty set. Since every isomorphism induces a bijection between the collections of initial objects, we cannot have an isomorphism.

Well... there was a difficulty in this exercise I wasn't fully aware of! The b) idea was: we take the poset \mathbb{N} for \mathcal{C} . For a functor $X : \mathbb{N}^{\mathrm{op}} \to \mathrm{Set}$, we define the poset G(X) as the set of pairs (n, x) satisfying $x \in X(n)$. We put $(n,x) \leq (m,y)$ iff $n \leq m$ and $X_{nm}(y) = x$ (where $X_{nm}: X(m) \to X(n)$ is the action of the functor X on the arrow $n \leq m$). It is easy to convince oneself that G(X) is a forest. Conversely, given a forest W one has a functor $F(W): \mathbb{N}^{\mathrm{op}} \to \mathrm{Set}$ by putting: F(W)(m) is the set of elements of W of level m. If $n \leq m$ and $x \in F(W)(m)$, then there is a unique element of level n which is $\leq x$; we define the action of F(W) on arrows accordingly. It is also straightforward that for a forest W, F(G(W)) is isomorphic to W and that for a functor X, G(F(X)) is isomorphic to X. So the pair F, G is an equivalence. However, it is not an isomorphism! Forests, being defined as posets, have the property that the level-sets (sets of elements of the same level) are pairwise disjoint. Functors $X : \mathbb{N}^{\mathrm{op}} \to \mathrm{Set}$ do not have the property that X(n) is disjoint from X(m) if $n \neq m!$ In short, we need an isomorphism between the category Set^{Nop} and its full subcategory on the functors X for which the sets X(n) are pairwise disjoint. There is a solution to this, but it seems to involve a bit of the foundations of category theory...

Consider N-indexed sequences of cardinal numbers $\kappa = (\kappa_n)_{n \in \mathbb{N}}$. For each such κ , let A_{κ} be the class of N-indexed families of sets $X = (X_n)_{n \in \mathbb{N}}$ which satisfy $|X_n| = \kappa_n$ for each n. Let B_{κ} be the subclass of A_{κ} consisting of those X which moreover satisfy $X_n \cap X_m = \emptyset$ for $n \neq m$. There is an injective operation from A_{κ} to B_{κ} , for example send X to the family $(\{(x,n) \mid x \in X_n\})_{n \in \mathbb{N}}$. By the Cantor-Schröder-Bernstein theorem (which also holds for classes), there is a bijection $F_{\kappa} : A_{\kappa} \to B_{\kappa}$ for each κ . Now we need a large axiom of choice (which is available if our category Set is "small" in some universe) to assign to any N-indexed family X a sequence of bijections $f_n : X_n \to F_{\kappa}(X)_n$ (where $\kappa = (|X_n|)_{n \in \mathbb{N}}$).

Now, for an object X of $\operatorname{Set}^{\mathbb{N}^{\operatorname{op}}}$, we have its underlying N-indexed family (also denoted X, or $(X_n)_{n \in \mathbb{N}}$), and the action on arrows $X_{nm} : X_m \to X_n$ for $n \leq m$. We define the structure of a functor $\mathbb{N}^{\operatorname{op}} \to \operatorname{Set}$ on $F_{\kappa}(X)$ by putting

$$F_{\kappa}(X)_{nm}(y) = f_n(X_{nm}(f_m^{-1}(y)))$$

and for an arrow $\mu : X \Rightarrow Y$ (where we have assigned $(f_n)_n : X_n \to F_{\kappa}(X)_n$ to X and $(g_n)_n : Y_n \to F_{\lambda}(Y)_n$ to Y), we define an arrow $G(\mu) : F_{\kappa}(X) \to F_{\lambda}(Y)$ by

$$G(\mu)_n(x) = g_n(\mu_n(f_n^{-1}(x)))$$

One has to check that $G(\mu)$ is indeed a natural transformation, and that the assignment G which sends every object X of $\operatorname{Set}^{\mathbb{N}^{\operatorname{OP}}}$ to the functor $F_{\kappa}(X)$ defined above and every μ to $G(\mu)$, is indeed a functor; this is straightforward. We now have the desired isomorphism from $\operatorname{Set}^{\mathbb{N}^{\operatorname{OP}}}$ to its full subcategory on the "pairwise disjoint" functors.

c) There is the tree \mathbb{N} , and it is clear that a forest F is well-founded if and only if there is no morphism of forests $\mathbb{N} \to F$. The forest \mathbb{N} is the terminal object of \mathcal{F} ; so a forest is well-founded if and only if it admits no arrow from the terminal object to itself.

Solution to Exercise 2.

a) Suppose that the diagram

commutes. Then $f_1bk = f_1e_1h = g_1e_1h = g_1bk$, so $cf_0k = f_1bk = g_1bk = cg_0k$. Since c is mono, we have $f_0k = g_0k$, and by the equalizer property of e_0 we find that k factors uniquely through e_0 by a map $n : X \to A$. Then $e_1an = be_0n = bk = e_1h$, so since e_1 is mono, we have an = h. We conclude that the left hand square in the exercise is a pullback.

b) Suppose $F : \mathcal{I} \to \mathcal{C}$ is a diagram and (D, μ) is a limiting cone for F in \mathcal{C} . Composition with $\mathcal{C}(C, -) : \mathcal{C} \to \text{Set}$ gives a diagram $G(i) = \mathcal{C}(C, F(i))$ in Set, where, for $f : i \to j$ in \mathcal{I} , $G(f) : \mathcal{C}(C, F(i)) \to \mathcal{C}(C, F(j))$ is given by composition with F(f).

If X is a set and $\nu : \Delta_X \Rightarrow G$ a natural transformation then for each $x \in X$ and $i \in \mathcal{I}_0$ we have $\nu_i(x) : C \to G(i)$ and for $f : i \to j$ the diagram

$$C \xrightarrow{\nu_i(x)} G(i) = \mathcal{C}(C, F(i))$$

$$\downarrow^{G(f)}$$

$$G(j) = \mathcal{C}(C, F(j))$$

So for every $x \in X$ we have a cone $\rho(x)$ in \mathcal{C} with vertex C. Since (D,μ) is limiting, we have a unique map of cones $\rho(x) \to (D,\mu)$; that is, for each $x \in X$ an arrow $C \to D$ in \mathcal{C} . We conclude that the cone $\mathcal{C}(C,D) \xrightarrow{\mathcal{C}(C,\mu)} \mathcal{C}(C,F)$ is limiting in Set.

Solution to Exercise 3.

a) First, suppose g is regular epi. The uniqueness of the required arrow $h: Y \to A$ is immediate from the assumption that m is mono, so we prove that such h exists. For the arrows a and b, choose regular epi-mono factorizations $a = m_1 e_1$, $b = m_2 e_2$. Using Proposition 4.3ii), we have that both $m_1(e_1g)$ and $(mm_2)e_2$ are regular epi-mono factorizations of the composition ag:

By the essential uniqueness of the regular epi-mono factorization, there is an isomorphism $\sigma: Z_1 \to Z_2$ satisfying $e_2 = \sigma e_1 g$ and $mm_2\sigma = m_1$. Then $m_2\sigma e_1: Y \to A$ is the required diagonal filler.

Conversely, suppose such a diagonal filler always exists for any diagram meeting the specifications of the exercise. We have to prove that g is regular epi. Let $X \xrightarrow{e} Z \xrightarrow{m} Y$ be the regular epi-mono factorization. Since the diagram

commutes and m is mono, there is a unique $h: Y \to Z$ with $mh = id_Y$ and hg = e. Now $mhm = id_Ym = mid_Z$ so since m is mono, $hm = id_Z$. We see that h is an inverse for m, so g is regular epi.

b) Let $A \xrightarrow{g} B \xrightarrow{f} C$ be arrows such that fg is regular epi. To show: f is regular epi. We use the criterion of part a), so suppose we have a commutative diagram

$$\begin{array}{c} B \xrightarrow{b} A \\ f \downarrow & \downarrow m \\ C \xrightarrow{a} B \end{array}$$

Compose this with g to obtain:

Since fg is regular epi we have a unique $h: C \to A$ such that mh = a and hfg = bg. Then mhf = af = mb whence, since m is mono, hf = b; this means that h is also a diagonal filler for the original diagram.

c) This part requires some more work. The first thing to notice is, that a subobject R of $X \times Y$ is tha graph of some $f : X \to Y$ if and only if the composition $R \to X \times Y \to X$ is an isomorphism. I leave this to you. We also use the fact that an arrow is an isomorphism if and only if it is both mono and regular epi.

We consider the subobjects $\llbracket S(x,z) \rrbracket$, $\llbracket S(x,z') \rrbracket$ and $\llbracket z = z' \rrbracket$ of $X \times Z \times Z$. *Z*. We have the projections $\pi_{12} : X \times Z \times Z \to X \times Z$ (projection on the first and second coordinate) and $\pi_{13} : X \times Z \times Z \to X \times Z$. We have: $\llbracket S(x,z) \rrbracket = \pi_{12}^*(S)$ and $\llbracket S(x,z') \rrbracket = \pi_{13}^*(S)$, and $\llbracket S(x,z) \wedge S(x,z') \rrbracket = \pi_{12}^*(S) \wedge \pi_{13}^*(S)$ (the second \wedge means: the meet in $\operatorname{Sub}(X \times Z \times Z)$). The assumption that the sequent $S(x,z) \wedge S(x,z') \vdash_{x,z,z'} z = z'$ is true means that

$$\pi_{12}^*(S) \wedge \pi_{13}^*(S) \le \llbracket z = z' \rrbracket \text{ in } \operatorname{Sub}(X \times Z \times Z)$$

Here $[\![z = z']\!]$ is the subobject of $X \times Z \times Z$ represented by the map $\operatorname{id}_X \times \delta : X \times Z \to X \times Z \times Z$, where $\delta : Z \to Z \times Z$ is the diagonal.

Furthermore we notice that for $S \in \operatorname{Sub}(X \times Z)$ the sequent $\vdash_x \exists z S(x, z)$ is true if and only if $S \to X$ is regular epi. Indeed, this sequent is true if and only if $\exists_{\pi_X}(S)$ is the top element of $\operatorname{Sub}(X)$ (where $\pi_X : X \times Z \to X$ is the projection), that is: if and only if the composition $S \to X \times Z \to X$ is regular epi.

Now suppose $\langle i_X, i_Y \rangle : R \to X \times Y$ represents the subobject R and $\langle u, v \rangle : S \times X \to Z$ represents S. We wish to show that $i_X : R \to X$ is an isomorphism. Because the map $u : S \to X$ is regular epi and it factors through i_X , by part b) of the exercise we know that i_X is regular epi. Therefore we have to see that i_X is mono.

Let $V \xrightarrow{f} R$ be a parallel pair such that $i_X f = i_X h$. Consider the map

$$a = \langle i_X f, i_Y f, i_Y h \rangle = \langle i_X h, i_Y f, i_Y h \rangle : V \to X \times Y \times Y$$

and consider the pullback

Writing q_{12}, q_{13} for the projections $X \times Y \times Y \to X \times Y$, we see that the map *a* factors through $q_{12}^*(R) \wedge q_{13}^*(R)$, and therefore the map *b* factors through $\pi_{12}^*(S) \wedge \pi_{13}^*(S)$. It follows from what we have seen before, that *b* factors through the subobject $\mathrm{id}_X \times \delta : X \times Y \to X \times Y \times Y$, and this means that $\pi_{12}b = \pi_{13}b$. Now we get

$$q_{12}ac = \langle \mathrm{id}_X \times g \rangle \pi_{12}b = \langle \mathrm{id}_X \times g \rangle \pi_{13}b = q_{13}ac.$$

Because c is regular epi, $q_{12}a = q_{13}a$. But this means that f = h. This concludes the proof that i_X is mono, and the exercise.

Solution to Exercise 4.

a) The multiplication of the monad GF has components

$$\mu_C = G(\varepsilon_{F(C)}) : GFGF(C) \to GF(C).$$

So in order to prove that μ is a natural isomorphism, it suffices to show that ε is a natural isomorphism. We prove that ε is both epi and split mono.

Consider a diagram $FG(D) \xrightarrow{\varepsilon_D} D \xrightarrow{f} D'$ in \mathcal{D} such that $f\varepsilon_D = g\varepsilon_D$. Then their transposes along $F \dashv G$ are equal, which means G(f) = G(g).

Since G is faithful, we have f = g. We conclude that ε_D is epi.

Now, we prove that ε is split mono. Since G is full, we have an arrow $\alpha : D \to FG(D)$ such that $G(\alpha) = \eta_{G(D)} : G(D) \to GFG(D)$. The composition $FG(D) \xrightarrow{\varepsilon_D} D \xrightarrow{\alpha} FG(D)$ transposes to $G(\alpha) = \eta_{G(D)}$, which is also the transpose of the identity on FG(D). We conclude that $\alpha \varepsilon_D$ is the identity on FG(D), so ε_D is split mono.

b) The answer is yes. Suppose $h : GF(D) \to D$ is a *T*-algebra. Then $h\eta_D = \mathrm{id}_D$. We consider

$$\eta_D h: GF(D) \to GF(D)$$

Since G is full, there is an arrow $\beta : F(D) \to F(D)$ such that $G(\beta) = \eta_D h$. The transpose of β is $G(\beta)\eta_D : D \to GF(D)$, which by choice of β is equal to $\eta_D h \eta_D = \eta_D$, which is also the transpose of $\mathrm{id}_{F(D)}$. We conclude that $\beta = \mathrm{id}_{F(D)}$, so

$$\eta_D h = G(\beta) = G(\mathrm{id}_{F(D)}) = \mathrm{id}_{GF(D)}.$$

We see that h is a 2-sided inverse of η_D . So there is at most one T-algebra structure on an object D of \mathcal{D} . I leave it to you to prove that there is at least one, too, and to conclude that T – Alg is equivalent to \mathcal{D} .

Solution to Exercise 5.

a) i) \Leftrightarrow ii): this is just working out the definition.

ii) \Rightarrow iii): suppose Z is a nonempty subpresheaf of X; suppose $\xi \in Z(C)$. Taking the identity on C for g in ii), we see that for some $h : C' \to C$ we have $X(h)(\xi) \in Y(C')$. Since Z is a subpresheaf of X, $X(h)(\xi) \in Y(C') \cap Z(C')$, therefore $Y \cap Z$ is nonempty.

iii) \Rightarrow ii): suppose $\xi \in X(C)$, $g: C' \to C$. Consider the subpresheaf Z of X generated by $X(g)(\xi)$: $Z(C'') = \{X(gh)(\xi) | h : C'' \to C'\}$. Then Z is nonermpty. By iii), $Z \cap Y$ is nonempty, so there is some $h: C'' \to C'$ such that $X(gh)(\xi) \in Y(C'')$; i.e., ii) holds.

b) Suppose $Y \subseteq X$ is dense, and $\xi \in X(C)$. For some $h : C' \to C$ we have $X(h)(\xi) \in Y(C')$. Now if h is an isomorphism, we find that $X(h^{-1})(X(h)(\xi)) \in Y(C)$, that is: $\xi \in Y(C)$. So Y = X.

Solution to Exercise 6.

a) Choosing for each object X of C a partial map classifier $\zeta_X : X \to \tilde{X}$, we have an assignment $(\widetilde{\cdot})$ on objects. In order to see that $(\widetilde{\cdot})$ can be extended to a functor, use the defining property of ζ_X on arrows $f : X \to Y$: let $\tilde{f} : \tilde{X} \to \tilde{Y}$ be the unique arrow making the square

a pullback (note, that f is a partial map from \tilde{X} to Y).

If $f = \mathrm{id}_X$, then clearly $\tilde{f} = \mathrm{id}_{\tilde{X}}$ since this turns the relevant square into a pullback. Similarly, for $g: Y \to Z$ we have that the outer square of the composite diagram

is a pullback; hence $\tilde{g}\tilde{f} = \tilde{g}\tilde{f}$ by uniqueness. So $(\widetilde{\cdot})$ is a functor, and $\zeta : \mathrm{id}_{\mathcal{C}} \Rightarrow (\widetilde{\cdot})$ is a natural transformation.

b) First we need to see that \tilde{F} as defined in part b) is indeed a sheaf on X. So, suppose we have a compatible family in \tilde{F} at some open $U \subseteq X$, indexed by a covering sieve. That is, we have an open cover $(U_i)_{i \in I}$ of U and elements (V_i, x_i) of $\tilde{F}(U_i)$. Hence $V_i \subseteq U_i$ and $x_i \in F(V_i)$. That this is a compatible family in \tilde{F} at U, means that for $i, j \in I$ we have $x_i \upharpoonright V_i \cap V_j = x_j \upharpoonright V_i \cap V_j$. We see that the family $(x_i)_{i \in I}$ is a compatible family in F at $\bigcup_{i \in I} V_i$. Since F is a sheaf, this family has a unique amalgamation $x \in F(V)$ where $V = \bigcup_{i \in I} V_i$. Now the pair $(V, x) \in \tilde{F}(U)$ is the uniqwue amalgamation of the original family; we conclude that \tilde{F} is a sheaf.

Clearly, we have a natural transformation $\zeta_F: F \to \tilde{F}$, defined by

$$(\zeta_F)_U(x) = (U, x).$$

Now suppose G is a sheaf on the space X, $H \subseteq G$ a subsheaf and $\mu : H \to F$ a morphism of sheaves. We define $\bar{\mu} : G \to \tilde{F}$ as follows: for $x \in G(U)$ let $\bar{\mu}_U(x)$ be (V, y) where

$$V = \bigcup \{ W \subseteq U \, | \, x \! \upharpoonright \! W \in H(W) \}$$

and $y \in F(V)$ is $\mu_V(x \upharpoonright V)$ (check that $x \upharpoonright V \in H(V)$). This is the only option for $\overline{\mu}$, and the pullback property is left to you to check.

c) [Sketch.] Now let G be a sheaf on a site (\mathcal{C}, J) . For a subsheaf H of G, an object C of \mathcal{C} and $x \in G(C)$, the sieve

$$R_x = \{ f : C' \to C \, | \, G(f)(x) \in H(C') \}$$

is closed, since H is a subsheaf. Therefore, if F is a sheaf and $\mu : H \to F$ a map of sheaves, for each $x \in G(C)$ we have a closed sieve R_x on C and an arrow $R_x \to F$.

So we define $\tilde{F}(C)$ to be the set of pairs (R, ξ) where R is a closed sieve on C and ξ a morphism $R \to F$ (i.e., a compatible family in F at C, indexed by the closed sieve R). The rest is analogous to the case in b) and left to you.