Category Theory and Topos Theory, Spring 2018 Hand-In Exercises

Jaap van Oosten

February-June 2016

1 Exercises

Exercise 1 (To be handed in February 19) A Forest is a partially ordered set $(F,<)$ such that for any $x \in F$, the set $F_{<x}=\{y \in F \mid y<x\}$ is a finite linear order. The cardinality of $F_{<x}$ is called the level of x. A morphism of forests $F \rightarrow G$ is an order-preserving and level-preserving function. Clearly, we have a category of forests \mathcal{F}.
a) A tree is a forest which has exactly one element of level 0 (the root of the tree. Let \mathcal{T} be the full subcategory (i.e. having the same morphisms) of \mathcal{F} on the trees. Show that the categories \mathcal{F} and \mathcal{T} are equivalent. Are they isomorphic? Motivate your answer.
b) Show that the category \mathcal{F} is isomorphic to a category of the form $\mathrm{Set}^{\mathcal{C}^{\text {op }}}$ for a suitable small category \mathcal{C}.
c) A forest F is called well-founded is there is no infinite sequence

$$
x_{0}<x_{1}<x_{2}<\cdots
$$

in \mathcal{F}. Give a purely category-theoretic property which characterizes the well-founded forests in \mathcal{F}.

Exercise 2 (To be handed in March 5) a) Consider the following diagram:

where we assume that the horizontal rows are equalizer diagrams, that $c f_{0}=f_{1} b, c g_{0}=g_{1} b$, the left hand square commutes and the arrow c is monic. Prove that the left-hand square is a pullback.
b) Let \mathcal{C} be a small category and C an object of \mathcal{C}; consider the functor $\mathcal{C}(C,-): \mathcal{C} \rightarrow$ Set. Prove that this functor preserves all limits which exist in \mathcal{C}.

Exercise 3 (To be handed in March 19) Throughout, we assume a regular category \mathcal{C}.
a) Show that an arrow $g: X \rightarrow Y$ is a regular epi precisely if the following condition holds: for every commutative diagram

with m mono, there is a unique arrow $h: Y \rightarrow A$ such that $m h=a$ and $h g=b$.
b) Use part a) to show that for any composable pair $A \xrightarrow{g} B \xrightarrow{f} C$ of arrows of \mathcal{C} we have: if $f g$ is regular epi, then so is f.
c) For any arrow $f: X \rightarrow Y$ in \mathcal{C} we define the graph of f as the subobject of $X \times Y$ represented by the mono $\left\langle\operatorname{id}_{X}, f\right\rangle: X \rightarrow X \times Y$.
Suppose X, Y, Z are objects of $\mathcal{C}, g: Z \rightarrow Y$ is a regular epi and $R \in$ $\operatorname{Sub}(X \times Y)$. Let $S=\left(\operatorname{id}_{X} \times g\right)^{*}(R) \in \operatorname{Sub}(X \times Z)$. Assume that the following two sequents of regular logic are true, with the evident interpretation:

$$
\begin{gathered}
\vdash_{x} \exists z S(x, z) \\
S(x, z) \wedge S\left(x, z^{\prime}\right) \vdash_{x, z, z^{\prime}} z=z^{\prime}
\end{gathered}
$$

Prove that there is an arrow $f: X \rightarrow Y$ such that R is the graph of f.
Exercise 4 (To be handed in April 9) Let $\mathcal{D} \underset{G}{\stackrel{F}{\leftrightarrows}} \mathcal{C}$ be an adjunction with $F \dashv G$ and G full and faithful. We denote the induced monad $G F$ on \mathcal{C} by T.
a) Prove that μ (the multiplication of the monad) is a natural isomorphism.
b) Is the functor G monadic? Justify your answer.

Exercise 5 (To be handed in April 23) Let X be a presheaf on a small category \mathcal{C} and let Y be a subpresheaf of X. We see X as a structure for ther language which has just one unary relation symbol R, and $\llbracket R \rrbracket=Y$.
a) Prove that the following three conditions are equivalent:
i) The sentence $\forall x \neg \neg R(x)$ is true in the structure X.
ii) For every $C \in \mathcal{C}_{0}$, every $\xi \in X(C)$ and every arrow $g: C^{\prime} \rightarrow C$ in \mathcal{C}, there is an arrow $h: C^{\prime \prime} \rightarrow C^{\prime}$ such that $X(g h)(\xi) \in Y\left(C^{\prime \prime}\right)$.
iii) For every subpresheaf Z of X which is not the initial presheaf, the intersection $Y \cap Z$ is not the initial presheaf.

If these conditions hold then Y is said to be a dense subpresheaf of X.
b) Assume that \mathcal{C} is a groupoid (all arrows are isomorphisms). Show that the only dense subpresheaf of X is X itself.

Exercise 6 (May be handed in digitally until May 9, midnight) In a category \mathcal{C} with pullbacks, a partial map classifier for an object X is a monomorphism $\zeta_{X}: X \rightarrow \tilde{X}$ with the property that for any mono $m: A \rightarrow B$ and arrow $f: A \rightarrow X$ (this is regarded as a partial map from B to X) there is a unique arrow $\bar{f}: B \rightarrow \tilde{X}$ which makes the diagram

a pullback.
a) (4 points) Suppose for every object X of \mathcal{C} there is a partial map classifier. Show that there is a functor $\widetilde{(\cdot)}: \mathcal{C} \rightarrow \mathcal{C}$ and a natural transformation $\zeta: \operatorname{id}_{\mathcal{C}} \Rightarrow \widetilde{(\cdot)}$ such that for every object X of \mathcal{C}, the arrow $\zeta_{X}: X \rightarrow \tilde{X}$ is a partial map classifier for X.
b) (6 points) Let X be a topological space; we consider the category $\operatorname{Sh}(X)$ of sheaves over X. Given such a sheaf F, we denote the action of F on inclusions $U \subseteq V$ (the morphisms in the category of open sets of X) by \upharpoonright : for $x \in F(V)$ we write $x \upharpoonright U$ for $F(U \subseteq V)(x)$. Now we define \tilde{F} as follows:

$$
\tilde{F}(V)=\{(U, x) \mid U \subseteq V, x \in F(U)\}
$$

and for $V^{\prime} \subseteq V$, we define $(U, x) \upharpoonright V^{\prime}$ to be $\left(U \cap V^{\prime}, x \upharpoonright\left(U \cap V^{\prime}\right)\right)$. Show that there is a natural map $F \rightarrow \tilde{F}$ in $\operatorname{Sh}(X)$ which is a partial map classifier for F.
c) (2 bonus points) Can you generalize the construction in b) to toposes of the form $\operatorname{Sh}(\mathcal{C}, \mathrm{Cov})$?

2 Solutions

Solution to Exercise 1.

a) Define functors $F: \mathcal{W} \rightarrow \mathcal{T}$ and $G: \mathcal{T} \rightarrow \mathcal{W}$ as follows: given a forest W, add a new bottom element to this poset, obtaining $F(W)$. For a morphism $f: W \rightarrow W^{\prime}$ we have $F(f): F(W) \rightarrow F\left(W^{\prime}\right)$ which is f when restricted
to W, and sends the bottom element to the bottom element of $F\left(W^{\prime}\right)$. Note that the level of each element of W is 1 higher in $F(W)$ than in W. In the other direction, given a tree $T, G(T)=T-\{r\}$ where r is the root of T. Here the levels get 1 lower, when we pass from T to $G(T)$. The definition of G on arrows is left to you. It is not hard to prove that F and G are functors. Clearly, $G(F(W))=W$, and $F(G(T))$ is isomorphic to T. The isomorphism is natural, because it is the identity except for the root.
The categories \mathcal{W} and \mathcal{T} cannot be isomorphic: look at initial objects in both categories. In \mathcal{T}, every singleton set is initial; but in \mathcal{W} there is exactly one initial object, the empty set. Since every isomorphism induces a bijection between the collections of initial objects, we cannot have an isomorphism.
b) Well...there was a difficulty in this exercise I wasn't fully aware of! The idea was: we take the poset \mathbb{N} for \mathcal{C}. For a functor $X: \mathbb{N}^{\text {op }} \rightarrow$ Set, we define the poset $G(X)$ as the set of pairs (n, x) satisfying $x \in X(n)$. We put $(n, x) \leq(m, y)$ iff $n \leq m$ and $X_{n m}(y)=x$ (where $X_{n m}: X(m) \rightarrow X(n)$ is the action of the functor X on the arrow $n \leq m$). It is easy to convince oneself that $G(X)$ is a forest. Conversely, given a forest W one has a functor $F(W): \mathbb{N}^{\text {op }} \rightarrow$ Set by putting: $F(W)(m)$ is the set of elements of W of level m. If $n \leq m$ and $x \in F(W)(m)$, then there is a unique element of level n which is $\leq x$; we define the action of $F(W)$ on arrows accordingly. It is also straightforward that for a forest $W, F(G(W))$ is isomorphic to W and that for a functor $X, G(F(X))$ is isomorphic to X. So the pair F, G is an equivalence. However, it is not an isomorphism! Forests, being defined as posets, have the property that the level-sets (sets of elements of the same level) are pairwise disjoint. Functors $X: \mathbb{N}^{\text {op }} \rightarrow$ Set do not have the property that $X(n)$ is disjoint from $X(m)$ if $n \neq m$! In short, we need an isomorphism between the category Set ${ }^{\mathbb{N}^{\mathrm{op}}}$ and its full subcategory on the functors X for which the sets $X(n)$ are pairwise disjoint. There is a solution to this, but it seems to involve a bit of the foundations of category theory...
Consider \mathbb{N}-indexed sequences of cardinal numbers $\kappa=\left(\kappa_{n}\right)_{n \in \mathbb{N}}$. For each such κ, let A_{κ} be the class of \mathbb{N}-indexed families of sets $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ which satisfy $\left|X_{n}\right|=\kappa_{n}$ for each n. Let B_{κ} be the subclass of A_{κ} consisting of those X which moreover satisfy $X_{n} \cap X_{m}=\emptyset$ for $n \neq m$. There is an injective operation from A_{κ} to B_{κ}, for example send X to the family $\left(\left\{(x, n) \mid x \in X_{n}\right\}\right)_{n \in \mathbb{N}}$. By the Cantor-Schröder-Bernstein theorem (which also holds for classes), there is a bijection $F_{\kappa}: A_{\kappa} \rightarrow B_{\kappa}$ for each κ. Now we need a large axiom of choice (which is available if our category Set is "small" in some universe) to assign to any \mathbb{N}-indexed family X a sequence of bijections $f_{n}: X_{n} \rightarrow F_{\kappa}(X)_{n}$ (where $\left.\kappa=\left(\left|X_{n}\right|\right)_{n \in \mathbb{N}}\right)$.
Now, for an object X of $\operatorname{Set}^{\mathbb{N}^{\text {op }}}$, we have its underlying \mathbb{N}-indexed family (also denoted X, or $\left(X_{n}\right)_{n \in \mathbb{N}}$), and the action on arrows $X_{n m}: X_{m} \rightarrow X_{n}$ for $n \leq m$. We define the structure of a functor $\mathbb{N}^{\text {op }} \rightarrow$ Set on $F_{\kappa}(X)$ by
putting

$$
F_{\kappa}(X)_{n m}(y)=f_{n}\left(X_{n m}\left(f_{m}^{-1}(y)\right)\right)
$$

and for an arrow $\mu: X \Rightarrow Y$ (where we have assigned $\left(f_{n}\right)_{n}: X_{n} \rightarrow$ $F_{\kappa}(X)_{n}$ to X and $\left(g_{n}\right)_{n}: Y_{n} \rightarrow F_{\lambda}(Y)_{n}$ to $\left.Y\right)$, we define an arrow $G(\mu)$: $F_{\kappa}(X) \rightarrow F_{\lambda}(Y)$ by

$$
G(\mu)_{n}(x)=g_{n}\left(\mu_{n}\left(f_{n}^{-1}(x)\right)\right)
$$

One has to check that $G(\mu)$ is indeed a natural transformation, and that the assignment G which sends every object X of $\operatorname{Set}^{\mathbb{N}^{\mathrm{OP}}}$ to the functor $F_{\kappa}(X)$ defined above and every μ to $G(\mu)$, is indeed a functor; this is straightforward. We now have the desired isomorphism from Set ${ }^{\mathbb{N o p}^{\text {op }}}$ to its full subcategory on the "pairwise disjoint" functors.
c) There is the tree \mathbb{N}, and it is clear that a forest F is well-founded if and only if there is no morphism of forests $\mathbb{N} \rightarrow F$. The forest \mathbb{N} is the terminal object of \mathcal{F}; so a forest is well-founded if and only if it admits no arrow from the terminal object to itself.

Solution to Exercise 2.

a) Suppose that the diagram

commutes. Then $f_{1} b k=f_{1} e_{1} h=g_{1} e_{1} h=g_{1} b k$, so $c f_{0} k=f_{1} b k=g_{1} b k=$ $c g_{0} k$. Since c is mono, we have $f_{0} k=g_{0} k$, and by the equalizer property of e_{0} we find that k factors uniquely through e_{0} by a map $n: X \rightarrow A$. Then $e_{1} a n=b e_{0} n=b k=e_{1} h$, so since e_{1} is mono, we have $a n=h$. We conclude that the left hand square in the exercise is a pullback.
b) Suppose $F: \mathcal{I} \rightarrow \mathcal{C}$ is a diagram and (D, μ) is a limiting cone for F in \mathcal{C}. Composition with $\mathcal{C}(C,-): \mathcal{C} \rightarrow$ Set gives a diagram $G(i)=\mathcal{C}(C, F(i))$ in Set, where, for $f: i \rightarrow j$ in $\mathcal{I}, G(f): \mathcal{C}(C, F(i)) \rightarrow \mathcal{C}(C, F(j))$ is given by composition with $F(f)$.
If X is a set and $\nu: \Delta_{X} \Rightarrow G$ a natural transformation then for each $x \in X$ and $i \in \mathcal{I}_{0}$ we have $\nu_{i}(x): C \rightarrow G(i)$ and for $f: i \rightarrow j$ the diagram

So for every $x \in X$ we have a cone $\rho(x)$ in \mathcal{C} with vertex C. Since (D, μ) is limiting, we have a unique map of cones $\rho(x) \rightarrow(D, \mu)$; that is, for each $x \in X$ an arrow $C \rightarrow D$ in \mathcal{C}. We conclude that the cone $\mathcal{C}(C, D) \xrightarrow{\mathcal{C}(C, \mu)} \mathcal{C}(C, F)$ is limiting in Set.

Solution to Exercise 3.

a) First, suppose g is regular epi. The uniqueness of the required arrow $h: Y \rightarrow A$ is immediate from the assumption that m is mono, so we prove that such h exists. For the arrows a and b, choose regular epi-mono factorizations $a=m_{1} e_{1}, b=m_{2} e_{2}$. Using Proposition 4.3ii), we have that both $m_{1}\left(e_{1} g\right)$ and $\left(m m_{2}\right) e_{2}$ are regular epi-mono factorizations of the composition ag:

By the essential uniqueness of the regular epi-mono factorization, there is an isomorphism $\sigma: Z_{1} \rightarrow Z_{2}$ satisfying $e_{2}=\sigma e_{1} g$ and $m m_{2} \sigma=m_{1}$. Then $m_{2} \sigma e_{1}: Y \rightarrow A$ is the required diagonal filler.
Conversely, suppose such a diagonal filler always exists for any diagram meeting the specifications of the exercise. We have to prove that g is regular epi. Let $X \xrightarrow{e} Z \xrightarrow{m} Y$ be the regular epi-mono factorization. Since the diagram

commutes and m is mono, there is a unique $h: Y \rightarrow Z$ with $m h=\operatorname{id}_{Y}$ and $h g=e$. Now $m h m=\operatorname{id}_{Y} m=m \mathrm{id}_{Z}$ so since m is mono, $h m=\mathrm{id}_{Z}$. We see that h is an inverse for m, so g is regular epi.
b) Let $A \xrightarrow{g} B \xrightarrow{f} C$ be arrows such that $f g$ is regular epi. To show: f is regular epi. We use the criterion of part a), so suppose we have a commutative diagram

Compose this with g to obtain:

Since $f g$ is regular epi we have a unique $h: C \rightarrow A$ such that $m h=a$ and $h f g=b g$. Then $m h f=a f=m b$ whence, since m is mono, $h f=b$; this means that h is also a diagonal filler for the original diagram.
c) This part requires some more work. The first thing to notice is, that a subobject R of $X \times Y$ is tha graph of some $f: X \rightarrow Y$ if and only if the composition $R \rightarrow X \times Y \rightarrow X$ is an isomorphism. I leave this to you. We also use the fact that an arrow is an isomorphism if and only if it is both mono and regular epi.
We consider the subobjects $\llbracket S(x, z) \rrbracket, \llbracket S\left(x, z^{\prime}\right) \rrbracket$ and $\llbracket z=z^{\prime} \rrbracket$ of $X \times Z \times$ Z. We have the projections $\pi_{12}: X \times Z \times Z \rightarrow X \times Z$ (projection on the first and second coordinate) and $\pi_{13}: X \times Z \times Z \rightarrow X \times Z$. We have: $\llbracket S(x, z) \rrbracket=\pi_{12}^{*}(S)$ and $\llbracket S\left(x, z^{\prime}\right) \rrbracket=\pi_{13}^{*}(S)$, and $\llbracket S(x, z) \wedge S\left(x, z^{\prime}\right) \rrbracket=$ $\pi_{12}^{*}(S) \wedge \pi_{13}^{*}(S)$ (the second \wedge means: the meet in $\operatorname{Sub}(X \times Z \times Z)$). The assumption that the sequent $S(x, z) \wedge S\left(x, z^{\prime}\right) \vdash_{x, z, z^{\prime}} z=z^{\prime}$ is true means that

$$
\pi_{12}^{*}(S) \wedge \pi_{13}^{*}(S) \leq \llbracket z=z^{\prime} \rrbracket \text { in } \operatorname{Sub}(X \times Z \times Z)
$$

Here $\llbracket z=z^{\prime} \rrbracket$ is the subobject of $X \times Z \times Z$ represented by the map $\operatorname{id}_{X} \times \delta: X \times Z \rightarrow X \times Z \times Z$, where $\delta: Z \rightarrow Z \times Z$ is the diagonal.
Furthermore we notice that for $S \in \operatorname{Sub}(X \times Z)$ the sequent $\vdash_{x} \exists z S(x, z)$ is true if and only if $S \rightarrow X$ is regular epi. Indeed, this sequent is true if and only if $\exists_{\pi_{X}}(S)$ is the top element of $\operatorname{Sub}(X)$ (where $\pi_{X}: X \times Z \rightarrow X$ is the projection), that is: if and only if the composition $S \rightarrow X \times Z \rightarrow X$ is regular epi.
Now suppose $\left\langle i_{X}, i_{Y}\right\rangle: R \rightarrow X \times Y$ represents the subobject R and $\langle u, v\rangle: S \times X \rightarrow Z$ represents S. We wish to show that $i_{X}: R \rightarrow X$ is an isomorphism. Because the map $u: S \rightarrow X$ is regular epi and it factors through i_{X}, by part b) of the exercise we know that i_{X} is regular epi. Therefore we have to see that i_{X} is mono.
Let $V \underset{h}{\stackrel{f}{\rightrightarrows}} R$ be a parallel pair such that $i_{X} f=i_{X} h$. Consider the map

$$
a=\left\langle i_{X} f, i_{Y} f, i_{Y} h\right\rangle=\left\langle i_{X} h, i_{Y} f, i_{Y} h\right\rangle: V \rightarrow X \times Y \times Y
$$

and consider the pullback

Writing q_{12}, q_{13} for the projections $X \times Y \times Y \rightarrow X \times Y$, we see that the map a factors through $q_{12}^{*}(R) \wedge q_{13}^{*}(R)$, and therefore the map b factors through $\pi_{12}^{*}(S) \wedge \pi_{13}^{*}(S)$. It follows from what we have seen before, that b factors through the subobject $\operatorname{id}_{X} \times \delta: X \times Y \rightarrow X \times Y \times Y$, and this means that $\pi_{12} b=\pi_{13} b$. Now we get

$$
q_{12} a c=\left\langle\operatorname{id}_{X} \times g\right\rangle \pi_{12} b=\left\langle\operatorname{id}_{X} \times g\right\rangle \pi_{13} b=q_{13} a c .
$$

Because c is regular epi, $q_{12} a=q_{13} a$. But this means that $f=h$. This concludes the proof that i_{X} is mono, and the exercise.

Solution to Exercise 4.

a) The multiplication of the monad $G F$ has components

$$
\mu_{C}=G\left(\varepsilon_{F(C)}\right): G F G F(C) \rightarrow G F(C)
$$

So in order to prove that μ is a natural isomorphism, it suffices to show that ε is a natural isomorphism. We prove that ε is both epi and split mono.
Consider a diagram $F G(D) \xrightarrow{\varepsilon_{D}} D \xlongequal[g]{\stackrel{f}{\rightrightarrows}} D^{\prime}$ in \mathcal{D} such that $f \varepsilon_{D}=g \varepsilon_{D}$.
Then their transposes along $F \dashv G$ are equal, which means $G(f)=G(g)$. Since G is faithful, we have $f=g$. We conclude that ε_{D} is epi.
Now, we prove that ε is split mono. Since G is full, we have an arrow $\alpha: D \rightarrow F G(D)$ such that $G(\alpha)=\eta_{G(D)}: G(D) \rightarrow G F G(D)$. The composition $F G(D) \xrightarrow{\varepsilon_{D}} D \xrightarrow{\alpha} F G(D)$ transposes to $G(\alpha)=\eta_{G(D)}$, which is also the transpose of the identity on $F G(D)$. We conclude that $\alpha \varepsilon_{D}$ is the identity on $F G(D)$, so ε_{D} is split mono.
b) The answer is yes. Suppose $h: G F(D) \rightarrow D$ is a T-algebra. Then $h \eta_{D}=\mathrm{id}_{D}$. We consider

$$
\eta_{D} h: G F(D) \rightarrow G F(D)
$$

Since G is full, there is an arrow $\beta: F(D) \rightarrow F(D)$ such that $G(\beta)=\eta_{D} h$. The transpose of β is $G(\beta) \eta_{D}: D \rightarrow G F(D)$, which by choice of β is equal to $\eta_{D} h \eta_{D}=\eta_{D}$, which is also the transpose of $\operatorname{id}_{F(D)}$. We conclude that $\beta=\mathrm{id}_{F(D)}$, so

$$
\eta_{D} h=G(\beta)=G\left(\operatorname{id}_{F(D)}\right)=\operatorname{id}_{G F(D)} .
$$

We see that h is a 2 -sided inverse of η_{D}. So there is at most one T-algebra structure on an object D of \mathcal{D}. I leave it to you to prove that there is at least one, too, and to conclude that $T-\mathrm{Alg}$ is equivalent to \mathcal{D}.

Solution to Exercise 5.

a) i) \Leftrightarrow ii): this is just working out the definition.
ii) \Rightarrow iii): suppose Z is a nonempty subpresheaf of X; suppose $\xi \in Z(C)$. Taking the identity on C for g in ii), we see that for some $h: C^{\prime} \rightarrow C$ we have $X(h)(\xi) \in Y\left(C^{\prime}\right)$. Since Z is a subpresheaf of $X, X(h)(\xi) \in$ $Y\left(C^{\prime}\right) \cap Z\left(C^{\prime}\right)$, therefore $Y \cap Z$ is nonempty.
iii \Rightarrow ii): suppose $\xi \in X(C), g: C^{\prime} \rightarrow C$. Consider the subpresheaf Z of X generated by $X(g)(\xi): Z\left(C^{\prime \prime}\right)=\left\{X(g h)(\xi) \mid h: C^{\prime \prime} \rightarrow C^{\prime}\right\}$. Then Z is nonermpty. By iii), $Z \cap Y$ is nonempty, so there is some $h: C^{\prime \prime} \rightarrow C^{\prime}$ such that $X(g h)(\xi) \in Y\left(C^{\prime \prime}\right)$; i.e., ii) holds.
b) Suppose $Y \subseteq X$ is dense, and $\xi \in X(C)$. For some $h: C^{\prime} \rightarrow C$ we have $X(h)(\xi) \in Y\left(C^{\prime}\right)$. Now if h is an isomorphism, we find that $X\left(h^{-1}\right)(X(h)(\xi)) \in Y(C)$, that is: $\xi \in Y(C)$. So $Y=X$.

Solution to Exercise 6.

a) Choosing for each object X of \mathcal{C} a partial map classifier $\zeta_{X}: X \rightarrow \tilde{X}$, we have an assignment $\widetilde{(\cdot)}$ on objects. In order to see that $\widetilde{(\cdot)}$ can be extended to a functor, use the defining property of ζ_{X} on arrows $f: X \rightarrow Y$: let $\tilde{f}: \tilde{X} \rightarrow \tilde{Y}$ be the unique arrow making the square

a pullback (note, that f is a partial map from \tilde{X} to Y).
If $f=\mathrm{id}_{X}$, then clearly $\tilde{f}=\mathrm{id}_{\tilde{X}}$ since this turns the relevant square into a pullback. Similarly, for $g: Y \rightarrow Z$ we have that the outer square of the composite diagram

is a pullback; hence $\tilde{g} \tilde{f}=\widetilde{g f}$ by uniqueness. So $\widetilde{(\cdot)}$ is a functor, and $\zeta: \operatorname{id}_{\mathcal{C}} \Rightarrow \widetilde{(\cdot)}$ is a natural transformation.
b) First we need to see that \tilde{F} as defined in part b) is indeed a sheaf on X. So, suppose we have a compatible family in \tilde{F} at some open $U \subseteq X$, indexed by a covering sieve. That is, we have an open cover $\left(U_{i}\right)_{i \in I}$ of U and elements $\left(V_{i}, x_{i}\right)$ of $\tilde{F}\left(U_{i}\right)$. Hence $V_{i} \subseteq U_{i}$ and $x_{i} \in F\left(V_{i}\right)$. That this is a compatible family in \tilde{F} at U, means that for $i, j \in I$ we have $x_{i} \upharpoonright V_{i} \cap V_{j}=x_{j} \backslash V_{i} \cap V_{j}$. We see that the family $\left(x_{i}\right)_{i \in I}$ is a compatible family in F at $\bigcup_{i \in I} V_{i}$. Since F is a sheaf, this family has a unique amalgamation $x \in F(V)$ where $V=\bigcup_{i \in I} V_{i}$. Now the pair $(V, x) \in \tilde{F}(U)$ is the uniqwue amalgamation of the original family; we conclude that \tilde{F} is a sheaf.
Clearly, we have a natural transformation $\zeta_{F}: F \rightarrow \tilde{F}$, defined by

$$
\left(\zeta_{F}\right)_{U}(x)=(U, x)
$$

Now suppose G is a sheaf on the space $X, H \subseteq G$ a subsheaf and $\mu: H \rightarrow$ F a morphism of sheaves. We define $\bar{\mu}: G \rightarrow \tilde{F}$ as follows: for $x \in G(U)$ let $\bar{\mu}_{U}(x)$ be (V, y) where

$$
V=\bigcup\{W \subseteq U|x| W \in H(W)\}
$$

and $y \in F(V)$ is $\mu_{V}(x \upharpoonright V)$ (check that $x \upharpoonright V \in H(V)$). This is the only option for $\bar{\mu}$, and the pullback property is left to you to check.
c) [Sketch.] Now let G be a sheaf on a site (\mathcal{C}, J). For a subsheaf H of G, an object C of \mathcal{C} and $x \in G(C)$, the sieve

$$
R_{x}=\left\{f: C^{\prime} \rightarrow C \mid G(f)(x) \in H\left(C^{\prime}\right)\right\}
$$

is closed, since H is a subsheaf. Therefore, if F is a sheaf and $\mu: H \rightarrow F$ a map of sheaves, for each $x \in G(C)$ we have a closed sieve R_{x} on C and an arrow $R_{x} \rightarrow F$.
So we define $\tilde{F}(C)$ to be the set of pairs (R, ξ) where R is a closed sieve on C and ξ a morphism $R \rightarrow F$ (i.e., a compatible family in F at C, indexed by the closed sieve R). The rest is analogous to the case in b) and left to you.

