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1 Exercises

Exercise 1 (To be handed in February 19) A Forest is a partially ordered
set (F, <) such that for any = € F, the set F., = {y € F'|y < z} is a finite
linear order. The cardinality of F., is called the level of x. A morphism of
forests F' — G is an order-preserving and level-preserving function. Clearly, we
have a category of forests F.

a) A tree is a forest which has exactly one element of level 0 (the root of the
tree. Let T be the full subcategory (i.e. having the same morphisms) of F
on the trees. Show that the categories F and T are equivalent. Are they
isomorphic? Motivate your answer.

b) Show that the category F is isomorphic to a category of the form Set¢”
for a suitable small category C.

c) A forest F is called well-founded is there is no infinite sequence
Ty <X <Top < :--

in F. Give a purely category-theoretic property which characterizes the
well-founded forests in F.

Exercise 2 (To be handed in March 5) a) Consider the following dia-

gram:
fo

A—=4B C

{ b J
f1

A B’ —_— C/

where we assume that the horizontal rows are equalizer diagrams, that
cfo = fib, cgo = g1b, the left hand square commutes and the arrow c is
monic. Prove that the left-hand square is a pullback.



b) Let C be a small category and C' an object of C; consider the functor
C(C,—) : C — Set. Prove that this functor preserves all limits which exist
in C.

Exercise 3 (To be handed in March 19) Throughout, we assume a regu-
lar category C.

a) Show that an arrow g : X — Y is a regular epi precisely if the following
condition holds: for every commutative diagram

X A
Ik
Y B

with m mono, there is a unique arrow h : Y — A such that mh = a and
hg = b.

b
—

—

a

b) Use part a) to show that for any composable pair A % B4y € of arrows
of C we have: if fg is regular epi, then so is f.

¢) For any arrow f: X — Y in C we define the graph of f as the subobject
of X x Y represented by the mono (idx, f) : X - X x Y.

Suppose X,Y, Z are objects of C, g : Z — Y is a regular epi and R €
Sub(X x Y). Let S = (idx x g)*(R) € Sub(X x Z). Assume that the
following two sequents of regular logic are true, with the evident interpre-

tation:
b 325(z, 2)
S(x,2) NS(x,2') by 2 =2

Prove that there is an arrow f : X — Y such that R is the graph of f.

F
Exercise 4 (To be handed in April 9) Let D &—= C be an adjunction with
G
F 4G and G full and faithful. We denote the induced monad GF on C by T.
a) Prove that p (the multiplication of the monad) is a natural isomorphism.

b) Is the functor G monadic? Justify your answer.

Exercise 5 (To be handed in April 23) Let X be a presheaf on a small
category C and let Y be a subpresheaf of X. We see X as a structure for
ther language which has just one unary relation symbol R, and [R] =Y.

a) Prove that the following three conditions are equivalent:

i) The sentence Yx——R(z) is true in the structure X.

ii) For every C € Cy, every £ € X(C) and every arrow g : C' — C in C,
there is an arrow h : C”" — C’ such that X (gh)(§) € Y(C").



iii) For every subpresheaf Z of X which is not the initial presheaf, the
intersection Y N Z is not the initial presheaf.

If these conditions hold then Y is said to be a dense subpresheaf of X.

b) Assume that C is a groupoid (all arrows are isomorphisms). Show that
the only dense subpresheaf of X is X itself.

Exercise 6 (May be handed in digitally until May 9, midnight) In a cat-
egory C with pullbacks, a partial map classifier for an object X is a monomor-
phism Cx : X — X with the property that for any mono m : A — B and arrow

f A — X (this is regarded as a partial map from B to X) there is a unique
arrow f : B — X which makes the diagram

A*f>X

m J(CX

B——

f

a pullback.

a) (4 points) Suppose for every object X of C there is a partial map classifier.
Show that there is a functor (-) : C — C and a natural transformation

¢ :ide = (-) such that for every object X of C, the arrow (x : X — X is
a partial map classifier for X.

b) (6 points) Let X be a topological space; we consider the category Sh(X)
of sheaves over X. Given such a sheaf F'; we denote the action of F' on
inclusions U C V (the morphisms in the category of open sets of X) by [:
for z € F(V) we write z|U for F(U C V)(x). Now we define F as follows:

F(V) = {(U.2)|U CV,z € F(U)}

and for V' C V', we define (U, z)[V' to be (UNV’,z[(UNV")). Show that
there is a natural map F — F' in Sh(X) which is a partial map classifier
for F.

¢) (2 bonus points) Can you generalize the construction in b) to toposes of
the form Sh(C, Cov)?

2 Solutions

Solution to Exercise 1.

a) Define functors F': W — T and G : T — W as follows: given a forest W,
add a new bottom element to this poset, obtaining F(W). For a morphism
f: W — W' we have F(f) : F(W) — F(W') which is f when restricted



to W, and sends the bottom element to the bottom element of F(W’).
Note that the level of each element of W is 1 higher in F(W) than in W.
In the other direction, given a tree T, G(T') = T — {r} where r is the root
of T. Here the levels get 1 lower, when we pass from T to G(T'). The
definition of G on arrows is left to you. It is not hard to prove that F' and
G are functors. Clearly, G(F'(W)) = W, and F(G(T')) is isomorphic to T'.
The isomorphism is natural, because it is the identity except for the root.

The categories W and T cannot be isomorphic: look at initial objects
in both categories. In T, every singleton set is initial; but in W there is
exactly one initial object, the empty set. Since every isomorphism induces
a bijection between the collections of initial objects, we cannot have an
isomorphism.

Well. . . there was a difficulty in this exercise I wasn’t fully aware of! The
idea was: we take the poset N for C. For a functor X : N°P — Set, we
define the poset G(X) as the set of pairs (n, x) satisfying x € X (n). We put
(n,z) < (m,y) iff n < m and X, (y) = z (where Xy, : X(m) = X(n)
is the action of the functor X on the arrow n < m). It is easy to convince
oneself that G(X) is a forest. Conversely, given a forest W one has a
functor F(W) : N°P — Set by putting: F(WW)(m) is the set of elements of
W of level m. If n < m and z € F(W)(m), then there is a unique element
of level n which is < z; we define the action of F'(W) on arrows accordingly.
It is also straightforward that for a forest W, F(G(W)) is isomorphic to
W and that for a functor X, G(F(X)) is isomorphic to X. So the pair
F, G is an equivalence. However, it is not an isomorphism! Forests, being
defined as posets, have the property that the level-sets (sets of elements
of the same level) are pairwise disjoint. Functors X : N°? — Set do not
have the property that X (n) is disjoint from X (m) if n # m! In short, we
need an isomorphism between the category Set™™” and its full subcategory
on the functors X for which the sets X (n) are pairwise disjoint. There
is a solution to this, but it seems to involve a bit of the foundations of
category theory. ..

Consider N-indexed sequences of cardinal numbers £ = (£, )nen. For each
such k, let A, be the class of N-indexed families of sets X = (X, )nen which
satisfy |X,| = kn for each n. Let B, be the subclass of A, consisting of
those X which moreover satisfy X, N X,, = 0 for n # m. There is
an injective operation from A, to B, for example send X to the family
({(z,n) |z € X;,})nen. By the Cantor-Schréder-Bernstein theorem (which
also holds for classes), there is a bijection Fy : A, — B, for each x. Now
we need a large axiom of choice (which is available if our category Set is
“small” in some universe) to assign to any N-indexed family X a sequence
of bijections f, : X,, = F(X)n (where k = (| X,|)nen)-

Now, for an object X of Set™ ", we have its underlying N-indexed family
(also denoted X, or (X,,)nen), and the action on arrows X, : X — X,
for n < m. We define the structure of a functor N°° — Set on F,,(X) by



putting
FN(X>nm(y) = fn(Xnm(frzl(y)»

and for an arrow p : X = Y (where we have assigned (f,), : X,, —
F.(X)n to X and (gn)n : Y — FA(Y), to Y), we define an arrow G(u) :

G(p)n(r) = gn(,un(f;l(x)))

One has to check that G(p) is indeed a natural transformation, and that
the assignment G which sends every object X of Set™™ to the functor
F.(X) defined above and every p to G(u), is indeed a functor; this is
straightforward. We now have the desired isomorphism from Set™” to its
full subcategory on the “pairwise disjoint” functors.

There is the tree N, and it is clear that a forest F' is well-founded if and
only if there is no morphism of forests N — F'. The forest N is the terminal
object of F; so a forest is well-founded if and only if it admits no arrow
from the terminal object to itself.

Solution to Exercise 2.

a)

Suppose that the diagram

A’T>B’

commutes. Then f1bk = fie1h = g1e1h = g1bk, so cfok = f1bk = 10k =
cgok. Since c¢ is mono, we have fok = gok, and by the equalizer property
of ey we find that k factors uniquely through ey by a map n : X — A.
Then ejan = begn = bk = e1h, so since ey is mono, we have an = h. We
conclude that the left hand square in the exercise is a pullback.

Suppose F' : Z — C is a diagram and (D, u) is a limiting cone for F in C.
Composition with C(C, —) : C — Set gives a diagram G(i) = C(C, F(i)) in
Set, where, for f: i — jin Z, G(f) : C(C, F(z)) — C(C, F(j)) is given by
composition with F'(f).

If X is aset and v : Ax = G a natural transformation then for each
z € X and i € Ty we have v;(z) : C — G(i) and for f : i — j the diagram

s Gli) = C(CL ()

—_—
G(f

G(j) = C(C, F(j))

C



So for every x € X we have a cone p(z) in C with vertex C. Since
(D, p) is limiting, we have a unique map of cones p(z) — (D, p); that
is, for each z € X an arrow C — D in C. We conclude that the cone

C(C, D) @) C(C, F) is limiting in Set.

Solution to Exercise 3.

a)

First, suppose g is regular epi. The uniqueness of the required arrow
h :Y — A is immediate from the assumption that m is mono, so we
prove that such h exists. For the arrows a and b, choose regular epi-mono
factorizations a = mye;, b = moey. Using Proposition 4.3ii), we have
that both mj(e;g) and (mmsz)es are regular epi-mono factorizations of
the composition ag:

X&ZQ&A

o| |

Y ——21——B

By the essential uniqueness of the regular epi-mono factorization, there is
an isomorphism o : Z; — Z satisfying e; = oge1g and mmsoo = my. Then
maoey 1 Y — A is the required diagonal filler.

Conversely, suppose such a diagonal filler always exists for any diagram
meeting the specifications of the exercise. We have to prove that ¢ is
regular epi. Let X = Z 23 Y be the regular epi-mono factorization. Since
the diagram

Z

X
QJ/ m
Y

Y

k

|

id
commutes and m is mono, there is a unique h : Y — Z with mh = idy

and hg = e. Now mhm = idym = midz so since m is mono, hm = idz.
We see that h is an inverse for m, so g is regular epi.

Let A % B Z O be arrows such that fg is regular epi. To show: f
is regular epi. We use the criterion of part a), so suppose we have a
commutative diagram

A

k

B
f m
C

|

a

[=p}



Compose this with g to obtain:

bg

£

[
[oH

SN

b
—

Q—s——»
<7
3

sy

—
a

Since fg is regular epi we have a unique h : C' — A such that mh = a and
hfg = bg. Then mhf = af = mb whence, since m is mono, hf = b; this
means that h is also a diagonal filler for the original diagram.

This part requires some more work. The first thing to notice is, that a
subobject R of X x Y is tha graph of some f: X — Y if and only if the
composition R — X XY — X is an isomorphism. I leave this to you. We
also use the fact that an arrow is an isomorphism if and only if it is both
mono and regular epi.

We consider the subobjects [ S(z,2)], [ S(z,z’)] and [z = 2'] of X x Z x
Z. We have the projections w15 : X X Z x Z — X x Z (projection on the
first and second coordinate) and m3 : X x Z x Z — X x Z. We have:
[S(x,2)] = 715(S) and [S(z,2")] = 7753(S), and [S(z,2) A S(x,2')] =
m15(S) A7i5(S) (the second A means: the meet in Sub(X x Z x Z)). The
assumption that the sequent S(z,2) A S(z,2’) by 5. 2 = 2’ is true means
that

() Ami5(S) < [2=2"] in Sub(X x Z x 2)
Here [z = 2'] is the subobject of X X Z X Z represented by the map
idx x60: X xZ—= X xZxZ,where § : Z — Z x Z is the diagonal.
Furthermore we notice that for S € Sub(X x Z) the sequent -, 325(z, 2)
is true if and only if S — X is regular epi. Indeed, this sequent is true if
and only if 3., (S) is the top element of Sub(X) (where 7x : X x Z — X
is the projection), that is: if and only if the composition S — X x Z — X
is regular epi.
Now suppose (ix,iy) : R — X X Y represents the subobject R and
(u,v) : S x X — Z represents S. We wish to show that ix : R — X is
an isomorphism. Because the map u : S — X is regular epi and it factors
through ix, by part b) of the exercise we know that ix is regular epi.
Therefore we have to see that ¢x is mono.

!
Let V —= R be a parallel pair such that ix f = ixh. Consider the
h

map

a = <ixf, iyf, th> = <ixh,iyf,iyh> Vo XxYxY



and consider the pullback

C

W——--—--=V
| |
Z Y xY

Writing q12, g13 for the projections X XY x Y — X x Y, we see that the
map a factors through ¢75(R) A ¢i3(R), and therefore the map b factors
through 735 (S) A 735(S). It follows from what we have seen before, that
b factors through the subobject idx x d : X XY — X xY x Y, and this
means that w120 = m13b0. Now we get

XXZxZ——XX

idx XgXxg

qi2aC = <1dX X g>7T12b = <1dX X g>’/T13b = @i3ac.

Because c¢ is regular epi, ¢ioa = qi3a. But this means that f = h. This
concludes the proof that ix is mono, and the exercise.

Solution to Exercise 4.

a)

The multiplication of the monad GF has components
pe = Gepe)) : GFGF(C) — GF(C).

So in order to prove that p is a natural isomorphism, it suffices to show
that € is a natural isomorphism. We prove that ¢ is both epi and split
mono.

f
Consider a diagram FG(D) 25D ——= D' inDsuchthat fep = gep.
g
Then their transposes along F' 4 G are equal, which means G(f) = G(g).
Since G is faithful, we have f = g. We conclude that ¢p is epi.

Now, we prove that ¢ is split mono. Since G is full, we have an arrow
a: D — FG(D) such that G(a) = ngp) : G(D) — GFG(D). The
composition FG(D) =2 D —% FG(D) transposes to G(a) = 1g(p),
which is also the transpose of the identity on F'G(D). We conclude that
aep is the identity on FG(D), so ep is split mono.

The answer is yes. Suppose h : GF(D) — D is a T-algebra. Then
hnp = idp. We consider

nph: GF(D) — GF(D)

Since G is full, there is an arrow 3 : F'(D) — F(D) such that G(8) = nph.
The transpose of 8 is G(8)np : D — GF(D), which by choice of 3 is equal
to nphnp = np, which is also the transpose of idp(p). We conclude that
/6 = idF(D)7 SO

noh = G(8) = Glidr(p)) = idar(p).



We see that h is a 2-sided inverse of np. So there is at most one T-algebra
structure on an object D of D. I leave it to you to prove that there is at
least one, too, and to conclude that T'— Alg is equivalent to D.

Solution to Exercise 5.

a)

i)<ii): this is just working out the definition.
ii)=iii): suppose Z is a nonempty subpresheaf of X; suppose & € Z(C).
Taking the identity on C for ¢ in ii), we see that for some h : C' — C
we have X(h)(§) € Y(C’). Since Z is a subpresheaf of X, X (h)(§) €
Y(C")Yn Z(C"), therefore Y N Z is nonempty.

iii)=-ii): suppose £ € X(C), g : C' — C. Consider the subpresheaf Z of
X generated by X(g)(&): Z(C") ={X(gh)(§)|h:C" — C"}. Then Z is
nonermpty. By iii), ZNY is nonempty, so there is some h : C” — C’ such
that X (gh)(§) € Y(C"); i.e., ii) holds.

Suppose Y C X is dense, and £ € X(C). For some h : ¢’ — C
we have X(h)(§) € Y(C'). Now if h is an isomorphism, we find that
X(h=H(X(h)(£)) € Y(C), that is: £ € Y(C). SoY = X.

Solution to Exercise 6.

a)

Choosing for each object X of C a partial map classifier Cx : X — X, we
have an assignment (-) on objects. In order to see that () can be extended
to a functor, use the defining property of (x on arrows f : X — Y: let
f X — Y be the unique arrow making the square

f
—

L
P 4
%‘T%
p?

e
f

a pullback (note, that f is a partial map from X to Y).

If f =idx, then clearly f = id ¢ since this turns the relevant square into
a pullback. Similarly, for g : Y — Z we have that the outer square of the
composite diagram

—— 7

Z

is a pullback; hence g f = ;? by uniqueness. So 6 is a functor, and

><

Cx

<;
@%«

t><z

¢ :ide = () is a natural transformation.



First we need to see that F' as defined in part b) is indeed a sheaf on
X. So, suppose we have a compatible family in F at some open U C X,
indexed by a covering sieve. That is, we have an open cover (U;);er of
U and elements (V;,z;) of F(U;). Hence V; C U; and x; € F(V;). That
this is a compatible family in F at U, means that for i,j € I we have
z;[ViNV; = x;V;NV;. We see that the family (x;);cr is a compatible
family in F at Uie ; Vi. Since F is a sheaf, this family has a unique
amalgamation x € F'(V) where V' = (J;.; Vi. Now the pair (V,z) € F(U)
is the unigwue amalgamation of the original family; we conclude that F
is a sheaf.

Clearly, we have a natural transformation (g : ' — F, defined by

Cr)u(z) = (U, z).

Now suppose G is a sheaf on the space X, H C G a subsheaf and o : H —
F a morphism of sheaves. We define i : G — F as follows: for z € G(U)
let i (x) be (V,y) where

V= | JWcU|zw e HW)}

and y € F(V) is puy(x[V) (check that [V € H(V)). This is the only
option for fi, and the pullback property is left to you to check.

[Sketch.] Now let G be a sheaf on a site (C, J). For a subsheaf H of G, an
object C of C and = € G(C), the sieve

Ry = {f:C" = C|G(f)(x) € H(C')}

is closed, since H is a subsheaf. Therefore, if F' is a sheaf and u: H — F
a map of sheaves, for each z € G(C) we have a closed sieve R, on C and
an arrow R, — F.

So we define F/(C) to be the set of pairs (R, ¢) where R is a closed sieve on
C and ¢ a morphism R — F' (i.e., a compatible family in F' at C, indexed
by the closed sieve R). The rest is analogous to the case in b) and left to
you.

10



