Exercise 21 Let $K : \mathbb{N} \to \mathbb{N}$, $G : \mathbb{N}^{k+1} \to \mathbb{N}$ and $H : \mathbb{N}^{k+3} \to \mathbb{N}$ be functions. Define F by:

$$F(0, \vec{y}, x) = G(\vec{y}, x)$$

$$F(z + 1, \vec{y}, x) = H(z, F(z, \vec{y}, K(x)), \vec{y}, x)$$

Suppose that G, H and K are primitive recursive.

a) Prove directly, using the pairing function j and suitably adapting the proof of proposition 2.1.9: if $\forall x(K(x) \leq x)$, then F is primitive recursive.

b) Define a new function F' by:

$$F'(0, m, \vec{y}, x) = G(\vec{y}, K^m(x))$$

$$F'(n + 1, m, \vec{y}, x) = H(n, F'(n, m, \vec{y}, x), \vec{y}, K^m(n + 1))$$

Recall that $K^m(n + 1)$ means: the function K applied m times.

Prove: if $n \leq m$ then $\forall k[F'(n, m + k, \vec{y}, x) = F'(n, m, \vec{y}, K^k(x))]$

c) Prove by induction: $F(z, \vec{y}, x) = F'(z, \vec{y}, x)$ and conclude that F is primitive recursive, also without the assumption that $K(x) \leq x$.

Solution: There is more than one way to solve a), which was the most challenging part of the exercise. Define the function \tilde{F} by:

$$\tilde{F}(z, \vec{y}, x) = \langle F(z, \vec{y}, 0), \ldots, F(z, \vec{y}, x) \rangle$$

Then $F(z, \vec{y}, x) = (\tilde{F}(z, \vec{y}, x))_x$, so if we can show that \tilde{F} is primitive recursive, then so is F, being defined from \tilde{F} by composition with primitive recursive functions.

Define an auxiliary function L by

$$L(z, u, \vec{y}, x) = \langle H(z, (u)_{K(x)}, \vec{y}, 0), \ldots, H(z, (u)_{K(x)}, \vec{y}, x) \rangle$$

Then

$$L(z, u, \vec{y}, 0) = \langle H(z, (u)_{K(0)}, 0) \rangle$$

$$L(z, u, \vec{y}, x + 1) = L(z, u, \vec{y}, x) * \langle H(z, (u)_{K(x+1)}, \vec{y}, x + 1) \rangle$$

so L is defined by primitive recursion from primitive recursive functions, hence primitive recursive. Now for \tilde{F} we have:

$$\tilde{F}(0, \vec{y}, x) = \langle G(\vec{y}, 0), \ldots, G(\vec{y}, x) \rangle$$

$$\tilde{F}(z + 1, \vec{y}, x) = L(z, \tilde{F}(z, \vec{y}, x), \vec{y}, x)$$

(this takes a few lines of checking!) where in the first line we have a function defined by course-of-values recursion from G (so primitive recursive); and \tilde{F} is defined by primitive recursion; so it is primitive recursive.
b) The only point here is to get the induction right. If one wishes to show \(\forall n \leq m \, P(m) \) then it suffices to show: \(P(0) \) and for all \(n < m \), if \(P(n) \) then \(P(n+1) \).

For \(n = 0 \) we have \(F'(n, m + k, \bar{y}, x) = F'(0, m + k, \bar{y}, x) = G(\bar{y}, K^{m+k}(x)) \) and also

\[
F'(n, m, \bar{y}, K^k(x)) = F'(0, m, \bar{y}, K^k(x)) = G(\bar{y}, K^n(K^k(x))) = G(\bar{y}, K^{m+k}(x))
\]

so the statement holds for \(n = 0 \). Suppose \(n < m \) and the statement holds for \(n \). Since \(n < m \) hence \(n + 1 \leq m \), we have \(m + k \cdot (n + 1) = (m - (n + 1)) + k \) (this is the point where the assumption \(n < m \) is used! This does not hold in general!), so using the induction hypothesis we have: \(F'(n + 1, m + k, \bar{y}, x) = H(n, F'(n, m + k, \bar{y}, x), \bar{y}, K^{m+k-n}(x)) = H(n, F'(n, m, \bar{y}, K^k(x)), \bar{y}, K^{m+n}(K^k(x))) = F'(n + 1, m, \bar{y}, K^k(x)) \). This completes the induction step.

c) We have \(F(0, \bar{y}, x) = G(\bar{y}, x) \) and \(F'(0, \bar{y}, x) = G(\bar{y}, K^0(x)) = G(\bar{y}, x) \), so for \(z = 0 \) the statement holds.

Suppose the statement holds for \(z \). Since \(z + 1 \cdot (z + 1) = 0 \) we have: \(F'(z + 1, z + 1, \bar{y}, x) = H(z, F'(z, z + 1, \bar{y}, x), \bar{y}, x) = H(z, F(z, z + 1, \bar{y}, x), \bar{y}, x) = F(z + 1, \bar{y}, x) \), which completes the induction step.

We see that the function \(F \) is defined by composition of \(F' \) (and projection functions); hence \(F \) is primitive recursive. Since we have never used that \(K(x) \leq x \) in this proof, \(F \) is primitive recursive without this assumption.

Exercise 35. Prove Smullyan’s Simultaneous Recursion Theorem: given two binary partial recursive functions \(F \) and \(G \), for every \(k \) there exist indices \(a \) and \(b \) satisfying for all \(x_1, \ldots, x_k \):

\[
a \cdot (x_1, \ldots, x_k) \simeq F(a, b) \cdot (x_1, \ldots, x_k)
\]

and

\[
b \cdot (x_1, \ldots, x_k) \simeq G(a, b) \cdot (x_1, \ldots, x_k)
\]

Solution: First, use the Recursion Theorem to find an index \(\alpha \) such that for all \(y, x_1, \ldots, x_k \):

\[
\alpha \cdot (y, x_1, \ldots, x_k) \simeq F(S^k_1(\alpha, y), y) \cdot (x_1, \ldots, x_k)
\]

Then, again applying the Recursion Theorem, find index \(\beta \) such that for all \(x_1, \ldots, x_k \):

\[
\beta \cdot (x_1, \ldots, x_k) \simeq G(S^k_1(\alpha, \beta), \beta) \cdot (x_1, \ldots, x_k)
\]

Let \(b = \beta \) and \(a = S^k_1(\alpha, \beta) \). Then:

\[
a \cdot (\bar{x}) \simeq S^k_1(\alpha, \beta) \cdot (\bar{x}) \\
\simeq \alpha \cdot (\bar{x}) \\
\simeq F(S^k_1(\alpha, \beta), \beta) \cdot (\bar{x}) \\
\simeq F(a, b) \cdot (\bar{x})
\]

and

\[
b \cdot (\bar{x}) \simeq \beta \cdot (\bar{x}) \\
\simeq G(S^k_1(\alpha, \beta), \beta) \cdot (\bar{x}) \\
\simeq G(a, b) \cdot (\bar{x})
\]

Exercise 55: Conclude from Theorem 3.3.3 that there cannot exist a total recursive function \(F \) which is such that for all \(e: \phi_e \) is constant on its domain if and only if \(F(e) \in K \).

Solution: Suppose there were such \(F \). Then we have that

\[
X = \{ e \mid \phi_e \text{ is constant on its domain} \}
\]

is reducible to \(K \) via \(F \), so \(X \) would be r.e. by Exercise 43.

It is also clear from the definition that \(X \) is extensional for indices of partial recursive functions.
Therefore, by Myhill-Shepherdson (3.3.3. part 1), the set $F = \{ \phi_e | e \in X \}$ is open in PR.
However, this would mean (by the remarks following Exercise 53) that F is upwards closed. Since F contains the empty function, therefore F would be the set of all partial recursive functions; so every partial recursive function would be constant on its domain. This is clearly false.

Exercise 72: Find for each of the following relations an n, as small as you can, such that they are in Σ_n, Π_n or Δ_n:

i) $\{ e | W_e \text{ is finite} \}$
ii) $\{ e | rge(\phi_e) \text{ is infinite} \}$
iii) $\{ e | \phi_e \text{ is constant (possibly partial)} \} = \{ e | \phi_e \text{ has at most one value} \}$
iv) $\{ j(e, f) | W_e \leq_m W_f \}$
v) $\{ e | W_e \text{ is } m\text{-complete in } \Sigma_1 \}$

Then, classify the first three of these completely, by showing that they are m-complete in the class you found.

Solution: we do i) and ii) simultaneously. Let $DomFin$ be the set $\{ e | W_e \text{ is finite} \}$ and let $RgeInf$ be the set $\{ e | rge(\phi_e) \text{ is infinite} \}$. We have:

$$e \in DomFin \iff \exists y \forall k (T(1, e, y, k) \rightarrow y \leq x)$$
$$e \in RgeInf \iff \forall y \exists z \exists k (T(1, e, y, k) \land U(k) > x)$$

From this we see that $DomFin$ is in Σ_2 and $RgeInf$ is in Π_2.

From the Kleene Normal Form Theorem we know that the set $Tot = \{ e | \forall x \exists y T(1, e, x, y) \}$ is m-complete in Π_2 and its complement $NTot = N - Tot$ is therefore m-complete in Σ_2. Let g be an index such that

$$g^*(e, x) \simeq \begin{cases}
 x & \text{if } \exists z \forall i < x T(1, e, i, (z)_i) \\
 \text{undefined} & \text{otherwise}
\end{cases}$$

Let $G(e) = S^1_L(g, e)$. We have: $rg(\phi_{G(e)})$ is infinite if and only if $W_{G(e)}$ is infinite, if and only if $e \in Tot$; so G reduces Tot to $RgeInf$ and $NTot$ to $DomFin$. Therefore, $RgeInf$ is m-complete in Π_2 and $DomFin$ is m-complete in Σ_2.

iii): let $Const$ be the set from iii). We have

$$e \in Const \iff \forall u y k l (T(1, e, u, k) \land T(1, e, y, l) \rightarrow U(k) = U(l))$$

which establishes that $Const$ is in Π_1.

Let g be an index satisfying:

$$g^*(e, x) \simeq \begin{cases}
 0 & \text{if } \forall y \leq x T(1, e, e, y) \\
 z + 1 & \text{if } z \leq x \text{ is minimal with } T(1, e, e, z)
\end{cases}$$

Let $G(e) = S^1_L(g, e)$. We see that $G(e) \in Const$ precisely when $e \in N - K$. Since K is m-complete in Σ_1 hence $N - K$ is m-complete in Π_1, we see that $Const$ is m-complete in Π_1.

iv): $W_e \leq_m W_f$ if and only if there is a total recursive function ϕ_u such that $W_e = \phi^{-1}_u(W_f)$. Therefore $W_e \leq_m W_f$ holds, if and only if the following condition is satisfied:

$$\exists u \ [\forall x \exists y T(1, u, x, y) \land \forall z w v \exists a (T(1, e, z, v) \land T(1, u, z, w) \rightarrow T(1, f, U(w), a)) \land \forall b c d e g (T(1, u, b, c) \land T(1, f, U(c), d) \rightarrow T(1, e, b, g))]$$
We have an existential quantifier before an intersection of Π_2-sets. Since Π_2 is closed under intersections (proposition 4.2.4), the set \(\{j(e, f) \mid W_e \leq_m W_f\} \) is in Σ_3.

v): W_e is m-complete in Σ_1 if and only if $K \leq_m W_e$. So the set of v) is in Σ_3 by the result of iv).

Exercise 77. Prove that for a set $X \subseteq \mathbb{N}$ the following assertions are equivalent:

i) X is creative

ii) X is 1-complete in Σ_1;

iii) X is m-complete in Σ_1;

iv) There is a total recursive bijective function h such that $h[X] = K$

Hint: use Exercises 75-76, proposition 4.3.5 and Theorem 4.3.3.

Solution: it is necessary to prove first that K is 1-complete in Σ_1. In fact the usual proof of m-completeness of K works, because Smm-functions can be assumed to be injective.

i) \Rightarrow ii): Suppose X is creative. Then by 4.3.5, $K \leq_1 X$. Since K is 1-complete, X is.

ii) \Rightarrow iii): trivial.

iii) \Rightarrow iv): Suppose X is m-complete in Σ_1. Then $K \leq_m X$. Since K is creative by Exercise 75, X is creative by Exercise 76 iii); so $K \leq_1 X$. Because K is 1-complete we also have $X \leq_1 K$. Statement iv) now follows from Theorem 4.3.3.

iv) \Rightarrow i): Suppose $h: \mathbb{N} \to \mathbb{N}$ is a total recursive bijection with $h[X] = K$. Let G be primitive recursive such that $W_{G(e)} = h[W_e]$ for all e. By 4.3.4, we may assume that K is creative via a total recursive, injective function H. Let $F(e) = h^{-1}(H(G(e)))$. We claim that X is creative via F. Indeed, suppose $W_e \cap X = \emptyset$. Then $W_{G(e)} \cap K = \emptyset$. So $H(G(e)) \notin W_{G(e)} \cup K$. Then $F(e) = h^{-1}(H(G(e))) \notin W_e \cup X$.

Exercise 87. Given sets A and B, prove that the following assertions are equivalent:

i) $B \leq_T A$

ii) There exist total recursive functions F and G such that the following holds:

\[
\begin{align*}
x \in B & \text{ if and only if } \exists \sigma(\sigma \in W_{F(x)} \land \forall i < \lh(\sigma)(\sigma)_i = \chi_A(i)) \\
x \notin B & \text{ if and only if } \exists \sigma(\sigma \in W_{G(x)} \land \forall i < \lh(\sigma)(\sigma)_i = \chi_A(i))
\end{align*}
\]

(Hint: use proposition 5.1.8.)

Solution: i) \Rightarrow ii): suppose i) holds. By proposition 5.1.8 we know that there is a number e such that for all x:

\[
\begin{align*}
x \in B & \text{ if and only if } \exists \sigma(\sigma \leq \chi_A \land \exists w(T^\sigma(1, e, x, w) \land U(w) = 0)) \\
x \notin B & \text{ if and only if } \exists \sigma(\sigma \leq \chi_A \land \exists w(T^\sigma(1, e, x, w) \land U(w) = 1))
\end{align*}
\]

where we use $\sigma \leq \chi_A$ as short for: $\forall i < \lh(\sigma)(\sigma)_i = \chi_A(i)$. Let f and g be indices such that

\[
f(x, y) \simeq \begin{cases} 0 & \text{if } \exists w(T^\sigma(1, e, x, w) \land U(w) = 0) \\
\text{undefined} & \text{otherwise}
\end{cases}
\]

\[
g(x, y) \simeq \begin{cases} 0 & \text{if } \exists w(T^\sigma(1, e, x, w) \land U(w) = 1) \\
\text{undefined} & \text{otherwise}
\end{cases}
\]

and put $F(x) = S_1^1(g, x)$, $G(x) = S_1^1(g, x)$. Then

\[
\begin{align*}
W_{F(x)} &= \{\sigma \mid \exists w(T^\sigma(1, e, x, w) \land U(w) = 0)\} \\
W_{G(x)} &= \{\sigma \mid \exists w(T^\sigma(1, e, x, w) \land U(w) = 1)\}
\end{align*}
\]
Then ii) holds: suppose $x \in B$. Then by the choice of e we have $\exists \sigma (\sigma \preceq \chi_A \land \exists w (T^{\sigma}(1, e, x, w) \land U(w) = 0))$ so $\exists \sigma (\sigma \preceq \chi_A \land \sigma \in W_{F(x)})$. The converse is immediate; and a similar equivalence holds for $x \notin B$.

ii) \Rightarrow i): suppose ii) holds. In order to determine $\chi_B(x)$, find the least pair $\langle \sigma, w \rangle$ satisfying $\sigma \preceq \chi_A$ and w testifies that $\sigma \in W_{F(x)}$ or $\sigma \in W_{G(x)}$. Note that only one of the two can happen. Output 0 if $\sigma \in W_{F(x)}$ and 1 if $\sigma \in W_{G(x)}$. This is recursive in A, so $B \leq_T A$.
