Exercise 1 (Exercise 38 of the lecture notes). Let $K : \mathbb{N} \to \mathbb{N}$, $G : \mathbb{N}^{k+1} \to \mathbb{N}$ and $H : \mathbb{N}^{k+3} \to \mathbb{N}$ be functions. Define F by:

\[
F(0, \vec{y}, x) = G(\vec{y}, x) \\
F(z + 1, \vec{y}, x) = H(z, F(z, \vec{y}, K(x)), \vec{y}, x)
\]

Suppose that G, H and K are primitive recursive.

a) (4 points) Prove directly, using the pairing function j and suitably adapting the proof of proposition 3.9: if $\forall x (K(x) \leq x)$, then F is primitive recursive.

b) (3 points) Define a new function F' by:

\[
F'(0, m, \vec{y}, x) = G(\vec{y}, K^m(x)) \\
F'(n + 1, m, \vec{y}, x) = H(n, F'(n, m, \vec{y}, x), \vec{y}, K^m(n+1)(x))
\]

Recall that $K^{m=\langle n+1 \rangle}$ means: the function K applied $m=\langle n+1 \rangle$ times.

Prove: if $n \leq m$ then $\forall k[F'(n, m + k, \vec{y}, x) = F'(n, m, \vec{y}, K^{k}(x))]$

c) (3 points) Prove by induction: $F(z, \vec{y}, x) = F'(z, z, \vec{y}, x)$ and conclude that F is primitive recursive, also without the assumption that $K(x) \leq x$.

Solution: There is more than one way to solve a), which was the most challenging part of the exercise. Define the function \tilde{F} by:

\[
\tilde{F}(z, \vec{y}, x) = \langle F(z, \vec{y}, 0), \ldots, F(z, \vec{y}, x) \rangle
\]
Then \(F(z, \bar{y}, x) = (\bar{F}(z, \bar{y}, x))_x \), so if we can show that \(\bar{F} \) is primitive recursive, then so is \(F \), being defined from \(\bar{F} \) by composition with primitive recursive functions.

Define an auxiliary function \(L \) by

\[
L(z, u, \bar{y}, x) = \langle H(z, (u)_{K(0)}, \bar{y}, 0), \ldots, H(z, (u)_{K(x)}, \bar{y}, x) \rangle
\]

Then

\[
L(z, u, \bar{y}, 0) = \langle H(z, (u)_{K(0)}, \bar{y}, 0) \rangle \\
L(z, u, \bar{y}, x + 1) = L(z, u, \bar{y}, x) \ast (H(z, (u)_{K(x+1)}, \bar{y}, x + 1))
\]

so \(L \) is defined by primitive recursion from primitive recursive functions, hence primitive recursive.

Now for \(\bar{F} \) we have:

\[
\bar{F}(0, \bar{y}, x) = \langle G(\bar{y}, 0), \ldots, G(\bar{y}, x) \rangle \\
\bar{F}(z + 1, \bar{y}, x) = L(z, \bar{F}(z, \bar{y}, x), \bar{y}, x)
\]

(this takes a few lines of checking!) where in the first line we have a function defined by course-of-values recursion from \(G \) (so primitive recursive); and \(\bar{F} \) is defined by primitive recursion; so it is primitive recursive.

b) The only point here is to get the induction right. If one wishes to show \(\forall n \leq m P(m) \) then it suffices to show: \(P(0) \) and for all \(n < m \), if \(P(n) \) then \(P(n + 1) \).

For \(n = 0 \) we have \(F'(n, m+k, \bar{y}, x) = F'(0, m+k, \bar{y}, x) = G(\bar{y}, K^{m+k}(x)) \)

and also

\[
F'(n, m, \bar{y}, K^k(x)) = F'(0, m, \bar{y}, K^k(x)) = G(\bar{y}, K^m(K^k(x))) = G(\bar{y}, K^{m+k}(x))
\]

so the statement holds for \(n = 0 \). Suppose \(n < m \) and the statement holds for \(n \). Since \(n < m \) hence \(n+1 \leq m \), we have \(m+k-(n+1) = (m-k-(n+1))+k \) (this is the point where the assumption \(n < m \) is used! This does not hold in general!), so using the induction hypothesis we have:

\[
F'(n+1, m+k, \bar{y}, x) = \\
H(n, F'(n, m+k, \bar{y}, x), \bar{y}, K^{m+k-(n+1)}(x)) = \\
H(n, F'(n, m, \bar{y}, K^k(x)), \bar{y}, K^{m-(n+1)}(K^k(x))) = \\
F'(n+1, m, \bar{y}, K^k(x))
\]

This completes the induction step.

c) We have \(F(0, \bar{y}, x) = G(\bar{y}, x) \) and \(F'(0, 0, \bar{y}, x) = G(\bar{y}, K^0(x)) = G(\bar{y}, x) \), so for \(z = 0 \) the statement holds.
Suppose the statement holds for z. Since $z + 1 ≡ (z + 1) = 0$ we have:

$$F'(z+1, z+1, g, x) = H(z, F'(z, z+1, g, x), g, x) = H(z, F'(z, g, K(x)), g, x) = F(z+1, g, x),$$

which completes the induction step.

We see that the function F is defined by composition from F' (and projection functions); hence F is primitive recursive. Since we have never used that $K(x) ≤ x$ in this proof, F is primitive recursive without this assumption.

Exercise 2 Given a natural number $x > 0$ and a prime number p, by ord\(_p\)(\(x\)) (the order of p at x) we mean the highest number n such that p^n divides x.

a) (2 points) Give a formula $ψ(v, x)$ in L_{PA} (but you can use the abbreviations pr, pp and $x\upharpoonright v$ from the notes) which expresses that $x > 0$, v is prime and ord\(_v\)(\(x\)) is even.

b) (2 points) Give also such a formula $χ(v, x)$, expressing: $x > 0$, v is prime and ord\(_v\)(\(x\)) $≡ 1$ (modulo 3).

c) (3 points) For the formula $ψ(v, x)$ from a), prove:

$$PA ⊢ ∀x[∀v \leq x(pr(v) → ψ(v, x)) → ∃y(y · y = x)]$$

d) (3 points) Prove in PA that “the root of a non-square is irrational”, that is:

$$PA ⊢ ∀xyz(x > 0 ∧ x · x = y · z · z → ∃v(y = v · v))$$

Solution: a) $x > 0 ∧ pr(v) ∧ ∃y(y · y = x \upharpoonright v)$
b) $x > 0 ∧ pr(v) ∧ ∃y(y · y · y · v = x \upharpoonright v)$
c) You will not be punished for assuming without proof that for $x, y > 0$ and $pr(v)$, $(x y) \upharpoonright v = (x \upharpoonright v)(y \upharpoonright v)$ but let’s do this first: since $(x \upharpoonright v) | x$ and $(y \upharpoonright v) | y$, $(x \upharpoonright v)(y \upharpoonright v) | xy$ and hence, since $(x \upharpoonright v)(y \upharpoonright v)$ is a v-power by Exercise 56a) and by the definition of $(\cdot)\upharpoonright v$, $(x \upharpoonright v)(y \upharpoonright v) | (xy) \upharpoonright v$. Conversely, if $x = (x \upharpoonright v) · w$ and $y = (y \upharpoonright v) · z$, then $v \upharpoonright wz$ and $x y = (x \upharpoonright v)(y \upharpoonright v) wz$, so $(xy) \upharpoonright v(x \upharpoonright v)(y \upharpoonright v)$.

To prove c) we employ well-founded induction. Let $χ(x)$ be the formula

$$∀v ≤ x(pr(v) → ψ(v, x)) → ∃y(y y = x)$$

and assume

1. $∀x' < xχ(x')$
2. $∀v ≤ x(pr(v) → ψ(v, x))$
We have to prove that \(x \) is a square. This is trivial if \(x \leq 1 \) so let \(x > 1 \). Then \(x \) has a prime divisor \(v \) by Proposition 4.5. By assumption (2), let \(y \) satisfy \(x|v = yy \). Then \(v|y \) so \(vv|x \); let \(z \) satisfy \(x = vvz \). We now have:

\[
\begin{align*}
(3) & \quad x|v = vv(z|v) \\
(4) & \quad \text{for } pr(w), w \neq v, x|w = z|w
\end{align*}
\]

From (3) and assumption (2) we get that \(z|v \) is a square, and (4) says that if \(pr(w) \) and \(w \neq v \) then \(z|w = x|w \), hence also a square by assumption (2).

By well-founded induction, we are done.

d) Suppose \(x > 0 \) and \(xx = yzz \). We have to prove that \(y \) is a square, which (again) is trivial if \(y \leq 1 \). So, let \(y > 1 \) and \(v \) a prime divisor of \(y \). We see that \((z|v)(z|v) \leq (x|v)(x|v) \) so \(z|v \leq x|v \), so \((z|v)|(x|v) \). Let \(x = x'(z|v) \), \(z = z'(z|v) \). Then \(xx' = yy'z'z' \) so

\[
y|v = (yz'z')|v = (x'|v)(x'|v)
\]

so \(y|v \) is a square. The number \(v \) was an arbitrary prime divisor of \(y \), therefore by c) we can conclude that \(y \) is a square.

Remark: the induction in c) is necessary: without the induction axioms, it is possible that there is a (nonstandard) model in which “\(\sqrt{2} \) is rational”: there are nonstandard elements \(p, q \) for which \(p^2 = 2q^2 \).

Exercise 3 This combines exercises 65 and 71 from the notes: give a full proof of Theorem 4.13 but now, with “\(\Sigma_1 \)-formula” replaced by “\(\Delta_1 \)-formula” (in definition 4.12).

Solution. For a primitive recursive function \(F \), let us write \(\varphi_F \) for the representing \(\Sigma_1 \)-formula constructed in the proof of 4.13. To be explicit:

If \(F \) is \(\lambda x.0 \) then \(\phi_F \) is \(z = 0 \)
If \(F \) is \(\lambda x.x + 1 \) then \(\phi_F \) is \(z = x + 1 \)
If \(F \) is \(\lambda x_1 \cdots x_k.x_i \) then \(\varphi_F \) is \(z = x_i \)
If \(F(\vec{x}) = G(H_1(\vec{x}), \ldots, H_m(\vec{x})) \) then \(\varphi_F \) is

\[
\exists w_1 \cdots w_m(\varphi_{H_1}(\vec{x}, w_1) \land \cdots \land \varphi_{H_m}(\vec{x}, w_m) \land \varphi_G(\vec{w}, z))
\]

If \(F(\vec{x}, 0) = G(\vec{x}) \) and \(F(\vec{x}, y + 1) = H(\vec{x}, F(\vec{x}, y), y) \) then \(\varphi_F \) is

\[
\exists a(\varphi_G(\vec{x}, (a, m)_0) \land \forall i < y \varphi_H(\vec{x}, (a, m)_i, i, (a, m)_{i+1}) \land (a, m)_y = z)
\]

We prove the following things, all by induction on the definition of \(F \) as a primitive recursive function:
1. For all \(n_1, \ldots, n_k \in \mathbb{N}\), PA \(\vdash \varphi_F(\overline{n_1}, \ldots, \overline{n_k}, F(n_1, \ldots, n_k))\)

2. PA \(\vdash \forall \overline{x} \exists ! z \varphi_F(\overline{x}, z)\)

3. The formula \(\varphi_F\) is, in PA, equivalent to a \(\Pi_1\)-formula.

For the basic functions, assertions 1–3 are immediate; note that \(\varphi_F\) is a \(\Delta_0\)-formula in these cases.

In the case of composition: \(F(\overline{x}) = G(H_1(\overline{x}), \ldots, H_m(\overline{x}))\) we assume 1–3 for \(\varphi_G, \varphi_{H_1}, \ldots, \varphi_{H_m}\).

1. Suppose \(\overline{x} = x_1, \ldots, x_k\). Given \(n_1, \ldots, n_k \in \mathbb{N}\) we have
PA \(\vdash \varphi_{H_i}(\overline{n_1}, \ldots, \overline{n_k}, H_i(n_1, \ldots, n_k))\) and PA \(\vdash \varphi_G(H_i(n_1, \ldots, n_k), F(n_1, \ldots, n_k))\)

so
\[
\text{PA} \vdash \exists \overline{w}(\varphi_{H_1}(\overline{n_1}, \ldots, \overline{n_k}, w_1) \land \cdots \land \varphi_{H_m}(\overline{n_1}, \ldots, \overline{n_k}, w_m) \land \varphi_G(\overline{w}, F(n_1, \ldots, n_k)))
\]
so PA \(\vdash \varphi_F(\overline{n_1}, \ldots, \overline{n_k}, F(n_1, \ldots, n_k))\).

2. Reason in PA: given \(\overline{x}\), we have \(w_1, \ldots, w_m\) with \(\varphi_{H_1}(\overline{x}, w_1), \ldots, \varphi_{H_m}(\overline{x}, w_m)\), by induction hypothesis on \(H_1, \ldots, H_m\). By induction hypothesis on \(G\) we get a \(z\) with \(\varphi_G(w_1, \ldots, w_m, z)\). So we have a \(z\) with \(\varphi_F(\overline{x}, z)\).

For uniqueness, suppose \(\varphi_F(\overline{x}, z) \land \varphi_F(\overline{x}, z')\). Then we have \(w_1, \ldots, w_m, w'_1, \ldots, w'_m\) with \(\varphi_{H_1}(\overline{x}, w_1), \ldots, \varphi_{H_m}(\overline{x}, w_m)\) and \(\varphi_{H_1}(\overline{x}, w'_1), \ldots, \varphi_{H_m}(\overline{x}, w'_m)\) and \(\varphi_G(\overline{w}, z)\), \(\varphi_G(\overline{w'}, z')\). The uniqueness in the induction hypothesis for \(H_1, \ldots, H_m\) gives \(w_1 = w'_1, \ldots, w_m = w'_m\); the uniqueness in the induction hypothesis for \(G\) now gives \(z = z'\).

3. Let \(\psi_G\) be a \(\Pi_1\)-formula such that PA \(\vdash \varphi_G(\overline{x}, z) \leftrightarrow \psi_G(\overline{x}, z)\). Define the formula \(\psi'(\overline{x}, z)\) by
\[
\forall \overline{w}(\varphi_{H_1}(\overline{x}, w_1) \land \cdots \land \varphi_{H_m}(\overline{x}, w_m) \rightarrow \psi_G(\overline{w}, z))
\]
Since the \(\varphi_{H_i}\) are \(\Sigma_1\), the formula \(\psi_G\) is \(\Pi_1\), the logical equivalence \(\forall x(\exists y A \rightarrow \forall w B) \leftrightarrow \forall xyw(A \rightarrow B)\) gives a \(\Pi_1\)-formula \(\psi_F\) equivalent to \(\psi'_F\).

We prove that \(\psi'_F\) is equivalent to \(\varphi_F\). Given \(\overline{x}, z\), assume \(\psi'_F(\overline{x}, z)\). By property 2 for \(H_1, \ldots, H_m\), there are \(w_1, \ldots, w_m\) with \(\varphi_{H_1}(\overline{x}, w_1), \ldots, \varphi_{H_m}(\overline{x}, w_m)\). Hence by \(\psi'_F(\overline{x}, z)\) we obtain \(\psi_G(\overline{w}, z)\) hence \(\varphi_G(\overline{x}, z)\). So we have \(\varphi_F(\overline{x}, z)\).

Conversely, suppose \(\varphi_F(\overline{x}, z)\) and assume \(\varphi_{H_1}(\overline{x}, w_1), \ldots, \varphi_{H_m}(\overline{x}, w_m)\).

By \(\varphi_F(\overline{x}, z)\) we find \(w'_1, \ldots, w'_m\) such that
\[
\varphi_{H_1}(\overline{x}, w'_1) \land \cdots \land \varphi_{H_m}(\overline{x}, w'_m) \land \varphi_G(\overline{w'_1}, \ldots, \overline{w'_m}, z)
\]
The uniqueness in the induction hypothesis for \(H_1, \ldots, H_m\) gives \(w_i = w'_i\) for \(i = 1, \ldots, n\). So we get \(\varphi_G(\overline{w}, z)\) and hence \(\psi_G(\overline{w}, z)\) using the induction hypothesis on \(G\). Hence \(\psi'_F(\overline{x}, z)\) follows.
In the case of primitive recursion:
1. Given n_1, \ldots, n_k, l we prove that $PA \vdash \varphi_F(n_1, \ldots, n_k, l, F(n_1, \ldots, n_k))$ by induction on l.

 For $l = 0$ we must prove $PA \vdash \exists a, m (\varphi_G(n_1, \ldots, n_k, (a, m)_0) \land (a, m)_0 = F(n_1, \ldots, n_k))$ which follows from 4.9 i).

 Inductively, suppose $PA \vdash \varphi_F(n_1, \ldots, n_k, l, F(n_1, \ldots, n_k))$ so there is a, m with

 $PA \vdash \varphi_G(n_1, \ldots, n_k, (a, m)_0) \land \forall i < l \varphi_H(n_1, \ldots, (a, m)_i, (a, m)_{i+1}) \land (a, m)_l = F(n_1, \ldots, n_k, l)$

 By 4.9 ii), find b, n such that $\forall i < l (a, m)_i = (b, n)_i$ and $(b, n)_{l+1}$ is the unique w such that $\varphi_H(n_1, \ldots, n_k, (a, m)_l, w)$. Then this (b, n) testifies that $PA \vdash \varphi_F(n_1, \ldots, n_k, l + 1, F(n_1, \ldots, n_k, l + 1))$.

2. In PA, let \vec{x}, y be given; to show $\exists z \varphi_F(\vec{x}, y, z)$. Induction on y. For $y = 0$ this is similar to case 1: use 4.9 i). For the induction step one uses 4.9 ii) again in a very similar way to the proof of 1.

 To get uniqueness of z: suppose $\varphi_F(\vec{x}, y, z) \land \varphi_F(\vec{x}, y, z')$. Then there are a, m, b, n such that

 $\varphi_G(\vec{x}, 0, (a, m)_0) \land \forall i < y \varphi_H(\vec{x}, (a, m)_i, (a, m)_{i+1}) \land z = (a, m)_y$

 $\varphi_G(\vec{x}, 0, (b, n)_0) \land \forall i < y \varphi_H(\vec{x}, (b, n)_i, (b, n)_{i+1}) \land z' = (b, n)_y$

 One proves, using the uniqueness in the induction hypothesis for G and H, that $\forall i < y (a, m)_i = (b, n)_i$, hence $z = z'$.

3. Let $\psi_F(\vec{x}, y, z)$ be the formula

 $\forall am(\varphi_G(\vec{x}, (a, m)_0) \land \forall i < y \varphi_H(\vec{x}, (a, m)_i, (a, m)_{i+1}) \rightarrow z = (a, m)_y$

 and ψ_F the obvious Π_1-equivalent of ψ_F. Again, one employs induction on y to prove the equivalence

 $\varphi_F(\vec{x}, y, z) \leftrightarrow \psi_F(\vec{x}, y, z)$

 In the proof, one uses the uniqueness property in the induction hypothesis, much in the way as property 3 was proved for composition.

Exercise 4. Recall that the following functions are primitive recursive.
The function assigning to x the Gödel number $\neg \chi$ if x is the Gödel number of some formula χ. Otherwise, its value is 0.

The function assigning to (x, y, i) the Gödel number $\chi[t/v_i]$ if x is the Gödel number of some term t, y is the Gödel number of some formula χ and t is free for v_i in χ. Otherwise, its value is 0.

The function assigning to a number x the Gödel number $\downarrow x$.

Let Neg, Sub and Num be formulas representing these functions in PA, in such a way that the recursions of the latter two are provable in PA.

We define the sequence of theories $(T_n)_{n \in \mathbb{N}}$ by recursion: $T_0 = \text{PA}$ and for $n \in \mathbb{N}$, T_{n+1} is $\text{PA} + \text{Con}_{T_n}$.

a) Prove that T_n is consistent for every $n \in \mathbb{N}$.

Thus, the given sequence is an ascending hierarchy of consistent theories, where each theory claims the consistency of the previous one. The goal of this exercise is to create a similar descending hierarchy, where each theory claims the consistency of the next one.

Now define the formula $\phi(v_0, v_1)$ as:

$$
\exists a \exists b \exists c \neg \Box(c) \land \neg \text{Neg}(b, c) \land \text{Sub}(\downarrow 0, v_0, 1, b) \land \text{Num}(v_1 + 1, a).
$$

b) Apply the Diagonalisation Lemma to ϕ to obtain a formula $\psi(v_1)$ and define $S_n := \text{PA} + \psi(n)$. Show that, in PA, the formula $\psi(n)$ naturally expresses the consistency of S_{n+1}.

It may look as though we have our desired sequence. However, the S_n also need to be consistent.

c) Prove that $\text{PA} \vdash \Box(\forall x, \neg \psi(x)) \rightarrow \forall x, \neg \psi(x)$. (Please don’t explicitly formalize the argument in PA; just make it clear that the argument may be so formalized.)

d) Deduce that S_n is inconsistent for all $n \in \mathbb{N}$. [Hint: use Löb’s Theorem]

This shows we have to be a bit more clever to solve our problem. Let $\phi'(v_0, v_1)$ be the formula

$$
\neg [\exists a \exists b \text{Proof}(v_1, b) \land \neg \text{Neg}(a, b) \land \text{Sub}(\downarrow 0, v_0, 1, a)] \rightarrow \phi(v_0, v_1).
$$

e) As before, apply Lemma 5.1 to ϕ' to obtain a formula $\psi'(v_1)$ and define $S'_n := \text{PA} + \psi'(n)$. Prove that S'_n is consistent.
f) Show that, in PA, the formula $\psi'(\bar{n})$ naturally expresses the consistency of S'_{n+1}.

g) Prove that S'_n is consistent for all $n \in \mathbb{N}$.

h) Can you explain why the argument that showed the S_n to be inconsistent doesn’t work now?