A Comment on Denef's Paper Hilbert's Tenth Problem for Quadratic Rings

Jaap van Oosten

November 7, 2013

We work in $A(D)$, the ring of integers of $\mathbb{Q}(\sqrt{D})$, where D is assumed to be a square-free integer >1. We know that $A(D)$ is of the form $\mathbb{Z}[\omega]$ with either $\omega=\sqrt{D}$ (if $D=2$ or $D \equiv 3 \bmod 4)$ or $\omega=\frac{1}{2}+\frac{1}{2} \sqrt{D}($ if $D \equiv 1 \bmod 4)$.

For an element $x=a+b \sqrt{D}$ of $A(D)$ we write $\bar{x}=a-b \sqrt{D}$ and $N(x)=a^{2}-D b^{2}=x \bar{x} ; N(x)$ is called the norm of x.
Remark 1. Let D^{\prime} be a square-free integer >1, different from D. Then for $x, y \in A(D)$ we have: $x=0$ and $y=0$ if and only if $x^{2}-D^{\prime} y^{2}=0$.
Proof. The 'only if' part is trivial so assume $x^{2}-D^{\prime} y^{2}=0$. If $y=0$ then clearly $x=0$ so we're done; assume $y \neq 0$. Write the equation as $\left(x-y \sqrt{D^{\prime}}\right)\left(x+y \sqrt{D^{\prime}}\right)=0$. We see that $\frac{x}{y}= \pm \sqrt{D^{\prime}}$ so $\frac{x \bar{y}}{N(y)}= \pm \sqrt{D^{\prime}}$ from which we conclude that D^{\prime} is a square in $\mathbb{Q}(\sqrt{D})$. Let $\alpha, \beta \in \mathbb{Q}$ be such that $(\alpha+\beta \sqrt{D})^{2}=D^{\prime}$. That means:
(1) $\alpha^{2}+D \beta^{2}=D^{\prime}$
(2) $2 \alpha \beta=0$

If $\beta=0$ then $\alpha^{2}=D^{\prime}$ but this is impossible because $\alpha \in \mathbb{Q}$ and D^{\prime} is not a square. If $\alpha=0$ then $D \beta^{2}=D^{\prime}$. Writing $\beta=\frac{p}{q}$ with $p, q \in \mathbb{Z}$ coprime, we obtain $D p^{2}=D^{\prime} q^{2}$. So $p^{2} \mid D^{\prime} q^{2}$ but p^{2} and q^{2} are coprime; hence $p^{2} \mid D^{\prime}$. If $p>1$ this contradicts the assumption that D^{\prime} is square-free; if $p=1$ we have $D=D^{\prime} q^{2}$ which contradicts the assumption that D is square-free unless $q=1$; but clearly, $p=1, q=1$ is no solution since $D^{\prime}>1$.

The point of Remark 1 is that Diophantine relations over $A(D)$ are closed under \wedge and \vee : if

$$
\begin{aligned}
& R=\{\vec{a} \in A(D) \mid \exists \vec{x} P(\vec{a}, \vec{x})=0\} \\
& S=\{\vec{b} \in A(D) \mid \exists \vec{y} Q(\vec{b}, \vec{y})=0\}
\end{aligned}
$$

for diophantine polynomials P and Q, then

$$
R \wedge S=\{(\vec{a}, \vec{b}) \in A(D) \mid \vec{a} \in R \text { and } \vec{b} \in S\}
$$

can be written as

$$
\left\{(\vec{a}, \vec{b}) \in A(D) \mid \exists \vec{x} \vec{y}\left[\left(P(\vec{a}, \vec{x})^{2}-D^{\prime} Q(\vec{b}, \vec{y})^{2}=0\right]\right\}\right.
$$

and, as usual, $R \vee S$ can be written as

$$
\{(\vec{a}, \vec{b}) \in A(D) \mid \exists \vec{x} \vec{y}[P(\vec{a}, \vec{x}) Q(\vec{b}, \vec{y})=0]\}
$$

Knowing this, we can reformulate the 'main Lemma' as follows:
Main Lemma. For every quadratic ring $A(D)$ there is a Diophantine relation $\Sigma(t, \vec{a})$ (writing \vec{a} for $\left(a_{1}, \ldots, a_{n}\right)$) such that the following hold:

1) For all $n+1$-tuples (t, \vec{a}) of $A(D)$, if $(t, \vec{a}) \in \Sigma$ then $t \in \mathbb{Z}$
2) For every natural number $k>0$, there is \vec{a} in $A(D)$ such that $\left(k^{2}, \vec{a}\right) \in \Sigma$ With Main Lemma we can prove that \mathbb{N} is Diophantine over $A(D)$. First, we show that \mathbb{Z} is Diophantine.

Indeed we have:

$$
\begin{aligned}
x \in \mathbb{Z} \Leftrightarrow & \exists t_{1} \cdots t_{4} \exists \overrightarrow{a_{1}} \cdots \vec{a}_{4} \\
& \left(\left(t_{1}, \vec{a}_{1}\right) \in \Sigma \text { or } t_{1}=0\right) \text { and } \\
& \vdots \\
& \left(\left(t_{4}, \vec{a}_{4}\right) \in \Sigma \text { or } t_{4}=0\right) \text { and } \\
& x=t_{1}+\cdots+t_{4} \text { or } x+t_{1}+\cdots+t_{4}=0
\end{aligned}
$$

Clearly, if RHS holds then $x= \pm\left(t_{1}+\cdots+t_{4}\right)$ and $t_{1}, \ldots, t_{4} \in \mathbb{Z}$ by a) of Main Lemma, so $x \in \mathbb{Z}$.
Conversely if $x \in \mathbb{Z}$, write $|x|$ as sum of four squares $k_{1}^{2}+\cdots+k_{4}^{2}$, with $k_{i} \in \mathbb{N}$. Let $t_{i}=k_{i}^{2}$. If $t_{i}=0$ let \vec{a}_{i} be arbitrary; if $t_{i}>0$ take \vec{a}_{i} as in b) of Main Lemma. Then RHS is satisfied.

Finally

$$
x \in \mathbb{N} \Leftrightarrow \exists y_{1} \cdots y_{4}\left(y_{1}, \ldots y_{4} \in \mathbb{Z} \text { and } x=y_{1}^{2}+\cdots+y_{4}^{2}\right)
$$

so N is Diophantine over $A(D)$, as required.

