A Comment on Denef's Paper Hilbert's Tenth Problem for Quadratic Rings

Jaap van Oosten

November 7, 2013

We work in A(D), the ring of integers of $\mathbb{Q}(\sqrt{D})$, where D is assumed to be a square-free integer > 1. We know that A(D) is of the form $\mathbb{Z}[\omega]$ with either $\omega = \sqrt{D}$ (if D = 2 or $D \equiv 3 \mod 4$) or $\omega = \frac{1}{2} + \frac{1}{2}\sqrt{D}$ (if $D \equiv 1 \mod 4$).

For an element $x = a + b\sqrt{D}$ of A(D) we write $\bar{x} = a - b\sqrt{D}$ and $N(x) = a^2 - Db^2 = x\bar{x}$; N(x) is called the *norm* of x.

Remark 1. Let D' be a square-free integer > 1, different from D. Then for $x, y \in A(D)$ we have: x = 0 and y = 0 if and only if $x^2 - D'y^2 = 0$. **Proof.** The 'only if' part is trivial so assume $x^2 - D'y^2 = 0$. If y = 0 then clearly x = 0 so we're done; assume $y \neq 0$. Write the equation as $(x - y\sqrt{D'})(x + y\sqrt{D'}) = 0$. We see that $\frac{x}{y} = \pm\sqrt{D'}$ so $\frac{x\overline{y}}{N(y)} = \pm\sqrt{D'}$ from which we conclude that D' is a square in $\mathbb{Q}(\sqrt{D})$. Let $\alpha, \beta \in \mathbb{Q}$ be such that $(\alpha + \beta\sqrt{D})^2 = D'$. That means:

- (1) $\alpha^2 + D\beta^2 = D'$
- (2) $2\alpha\beta = 0$

If $\beta = 0$ then $\alpha^2 = D'$ but this is impossible because $\alpha \in \mathbb{Q}$ and D' is not a square. If $\alpha = 0$ then $D\beta^2 = D'$. Writing $\beta = \frac{p}{q}$ with $p, q \in \mathbb{Z}$ coprime, we obtain $Dp^2 = D'q^2$. So $p^2|D'q^2$ but p^2 and q^2 are coprime; hence $p^2|D'$. If p > 1 this contradicts the assumption that D' is square-free; if p = 1 we have $D = D'q^2$ which contradicts the assumption that D is square-free unless q = 1; but clearly, p = 1, q = 1 is no solution since D' > 1. The point of Remark 1 is that Diophantine relations over A(D) are closed under \wedge and \vee : if

$$\begin{array}{rcl} R & = & \{ \vec{a} \in A(D) \, | \, \exists \vec{x} P(\vec{a}, \vec{x}) = 0 \} \\ S & = & \{ \vec{b} \in A(D) \, | \, \exists \vec{y} Q(\vec{b}, \vec{y}) = 0 \} \end{array}$$

for diophantine polynomials P and Q, then

$$R \wedge S = \{ (\vec{a}, \vec{b}) \in A(D) \mid \vec{a} \in R \text{ and } \vec{b} \in S \}$$

can be written as

$$\{(\vec{a}, \vec{b}) \in A(D) \mid \exists \vec{x} \vec{y} [(P(\vec{a}, \vec{x})^2 - D'Q(\vec{b}, \vec{y})^2 = 0]\}$$

and, as usual, $R \lor S$ can be written as

$$\{(\vec{a}, \vec{b}) \in A(D) \,|\, \exists \vec{x} \vec{y} [P(\vec{a}, \vec{x})Q(\vec{b}, \vec{y}) = 0]\}$$

Knowing this, we can reformulate the 'main Lemma' as follows:

Main Lemma. For every quadratic ring A(D) there is a Diophantine relation $\Sigma(t, \vec{a})$ (writing \vec{a} for (a_1, \ldots, a_n)) such that the following hold:

- 1) For all n + 1-tuples (t, \vec{a}) of A(D), if $(t, \vec{a}) \in \Sigma$ then $t \in \mathbb{Z}$
- 2) For every natural number k > 0, there is \vec{a} in A(D) such that $(k^2, \vec{a}) \in \Sigma$

With Main Lemma we can prove that \mathbb{N} is Diophantine over A(D). First, we show that \mathbb{Z} is Diophantine.

Indeed we have:

$$x \in \mathbb{Z} \iff \exists t_1 \cdots t_4 \exists \vec{a_1} \cdots \vec{a_4} \\ ((t_1, \vec{a_1}) \in \Sigma \text{ or } t_1 = 0) \text{ and} \\ \vdots \\ ((t_4, \vec{a_4}) \in \Sigma \text{ or } t_4 = 0) \text{ and} \\ x = t_1 + \cdots + t_4 \text{ or } x + t_1 + \cdots + t_4 = 0$$

Clearly, if RHS holds then $x = \pm (t_1 + \cdots + t_4)$ and $t_1, \ldots, t_4 \in \mathbb{Z}$ by a) of Main Lemma, so $x \in \mathbb{Z}$.

Conversely if $x \in \mathbb{Z}$, write |x| as sum of four squares $k_1^2 + \cdots + k_4^2$, with $k_i \in \mathbb{N}$. Let $t_i = k_i^2$. If $t_i = 0$ let \vec{a}_i be arbitrary; if $t_i > 0$ take \vec{a}_i as in b) of Main Lemma. Then RHS is satisfied.

Finally

$$x \in \mathbb{N} \iff \exists y_1 \cdots y_4 (y_1, \ldots, y_4 \in \mathbb{Z} \text{ and } x = y_1^2 + \cdots + y_4^2)$$

so N is Diophantine over A(D), as required.