Seminar H10: exercises week 11

(Presentation: Nils Donselaar)

Due 9 December 2013

Exercise 1

a) Give a proof of Lemma 2, i.e. prove that if F is a field of characteristic $p \geq 3$, then for all $x \in F(t)$ the expression $u=\frac{x^{p}+t}{x^{p}-t}$ has only simple zeroes and poles.
b) Using Lemma 2, complete the proof of Lemma 3 discussed during the presentation by proving the right-to-left direction for the case where $s>0$ and y is not a p-th power of any function $z \in \bar{F}(t)$.
Hint: Show that v cannot be and at the same time has to be a p-th power under these assumptions, thereby showing that this case cannot occur.

Exercise 2

Prove the Proposition used in the proof of Lemma 4: If $z \in F[t]$ has only simple roots and $t \nmid z$, then $\exists s \in \mathbb{N}_{>0} z \mid t^{p^{s}-1}-1$. Hint: consider $F[t] /(z)$ and use the fact that $n\left|m \Rightarrow t^{n}-1\right| t^{m}-1$ at some point in the proof.

