Seminar on Hilbert's Tenth Problem Homework week 12, due December 16

Exercise 1. (5 points)
Let R be a commutative ring with 1 , let $k \geq 1$ and let $S, T \subset R^{k}$ be Diophantine. Prove:
(a) If R is an integral domain, then $S \cup T$ is also a Diophantine subset of R^{k}.
(b) If the fraction field of R is not algebraically closed, then $S \cap T$ is also a Diophantine subset of R^{k}.

Exercise 2. (10 points)
In this exercise, we will prove Proposition 2. Recall that p is assumed to be odd. The first two exercises are preliminary.
(a) Prove that, for every $a \in \mathbb{N}$, we have $\operatorname{deg} X_{a}=a$ and $X_{-a}=X_{a}$.
(b) Prove that, for every $a \in \mathbb{Z}$ and $b \in \mathbb{N}$, we have $X_{a p^{b}}=\left(X_{a}\right)^{p^{b}}$.

Now we prove Proposition 2: let $A, B \in \mathbb{F}_{q}[Z]$ with B non-constant. Then

$$
\exists k \in \mathbb{N}\left(A=B^{p^{k}}\right) \Leftrightarrow \exists m \in \mathbb{Z}\left(A=X_{m}(B)\right) \wedge \exists n \in \mathbb{Z}\left(A+1=X_{n}(B+1)\right)
$$

(c) Suppose that $A=B^{p^{k}}$ for some $k \in \mathbb{N}$. Prove that the right-hand side holds with $m=n=p^{k}$.
(d) Now suppose the right-hand side holds. Explain why we can assume that $m, n \in \mathbb{N}$. Show that $X_{n}(B+1)=X_{n}(B)+1$.
(e) Since $X_{0}=1$, we cannot have $n=0$. Now write $n=c p^{k}$ with $c, k \in \mathbb{N}$ and $p \nmid c$. Prove that $X_{c}(B+1)=X_{c}(B)+1$.
(f) Show that the assumption that $c \geq 2$ leads to a contradiction. Conclude that proposition 2 holds. Hint: write $X_{c}(Z)=\alpha Z^{c}+\beta Z^{c-1}+$ terms of lower degree.

Exercise 3. (5 points)
Let n be a positive integer. Prove that

$$
Z^{n}-1=\prod_{d \mid n} \Phi_{d}(Z)
$$

