Seminar Hilbert 10 - Homework 13

Eric Faber

Due January 6

In these exercises, p is a prime and q a power of p.
Exercise 1 Prove that for all n, m :

$$
\mathbb{F}_{q^{n}} \cap \mathbb{F}_{q^{m}}=\mathbb{F}_{q^{\operatorname{gcd}(n, m)}}
$$

Exercise 2 Recall that we used the following Diophantine predicate to bound degrees and quantify over $\mathbb{F}_{q}[Z]$ only:

$$
\beta(X, e) \Longleftrightarrow X=0 \vee\left(X \mid Z^{q^{2 e}}-Z^{q^{e}}\right)
$$

which is equivalent to

$$
\beta(X, e) \Longleftrightarrow X^{2} \mid\left(Z^{q^{2 e}}-Z^{q^{e}}\right) X
$$

We want to prove that for every $X \in \mathbb{F}_{q}[Z]$, there is e such that $\beta(X, e)$.
Define the radical of X to be the biggest square-free divisor of X.
(a) Show that for $X \neq 0$, and Y the radical of X, there exists $c \in \mathbb{N}$ such that

$$
X \mid Y^{c}
$$

(b) Let $\mathbb{F}_{q^{d}}$ be the splitting field of Y, for some d. Show that $Y \mid Z^{q^{e}}-Z$ for all e such that $d \mid e$.
(c) Show that there exists e such that $X \mid Z^{q^{2 e}}-Z^{q^{e}}$.

Exercise 3 In this exercise, we will prove that the irreducible factors of Φ_{a} in $\mathbb{F}_{q}[Z]$ have degree $\operatorname{ord}(q \bmod a)$, where $\operatorname{ord}(q \bmod a)$ is the order of $q \operatorname{in}(\mathbb{Z} / a \mathbb{Z})^{*}$. We assume that a is prime to p, so that in fact $q \in(\mathbb{Z} / a \mathbb{Z})^{*}$. Recall that

$$
\Phi_{a}(Z)=\prod_{k \in(\mathbb{Z} / a \mathbb{Z})^{*}}\left(Z-\zeta_{a}^{k}\right)
$$

where ζ_{a} is a primitive $a-$ th root of unity, i.e. a generator of the group of a-th roots of unity under multiplication.

We know that $\Phi_{a}(Z)$ has integer coefficients, so we can view it as an element of $\mathbb{F}_{q}[Z]$.
(a) Show that $\zeta_{a} \in \mathbb{F}_{q^{k}}$ if and only if $q^{k} \equiv 1(\bmod a)$.
(b) Conclude that for $\Psi_{a}(Z)$ an irreducible factor of $\Phi_{a}(Z)$ in $\mathbb{F}_{q}[Z]$,

$$
\mathbb{F}_{q}[Z] /\left(\Psi_{a}(Z)\right) \cong \mathbb{F}_{q^{\operatorname{ord}(q \bmod a)}}
$$

and that therefore $\operatorname{deg} \Psi_{a}(Z)=\operatorname{ord}(q \bmod a)$.

