Homework set 14

Hilbert's tenth problem seminar, Fall 2013, due January 14th

By Niels Voorneveld

Exercise 1:

We are in the field $\mathbb{F}_{q}[Z]$. Remember that \mathcal{M} consists of triples (F, w, s) with s a q-th power, $w \leq s$ and $F=\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \alpha_{i j} Z^{s i+j}$ where d some natural number and all $a_{i j} \in \mathbb{F}_{q}$.
Remember that $\theta: \mathcal{M} \rightarrow \mathbb{F}_{q}[V, W]$ sends $\left(\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \alpha_{i j} Z^{s i+j}, w, s\right)$ to $\Sigma_{i=0}^{d-1} \Sigma_{j=0}^{w-1} \alpha_{i j} V^{i} W^{j}$.
Let $\left(F_{1}, w, s\right),\left(F_{2}, w, s\right) \in \mathcal{M}$.
a) Prove that $\theta\left(F_{1}, w, s\right)+\theta\left(F_{2}, w, s\right)=\theta\left(F_{1}+F_{2}, w, s\right)$
b) Prove that if $2 w \leq s, \theta\left(F_{1}, w, s\right) \cdot \theta\left(F_{2}, w, s\right)=\theta\left(F_{1} F_{2}, 2 w, s\right)$

Exercise 2:

a) Prove that the following function:
$\delta: \mathbb{F}_{q}[Z] \times \mathbb{F}_{q}[Z] \rightarrow \mathbb{F}_{q}[Z],(A, B) \mapsto A^{p} Z+B^{p}$ is injective.
b) Knowing that any r.e. subset of $\mathbb{F}_{q}[Z]$ is diophantine in $\mathbb{F}_{q}[Z]$, prove that any r.e. subset of $\mathbb{F}_{q}[Z]^{k}$ for some $k>1$ is diophantine in $\mathbb{F}_{q}[Z]$.

Exercise 3:

Take \mathbb{F} to be a recursive infinite algebraic extension of the field \mathbb{F}_{p}, with p some prime. Take q a power of p. Take $X \epsilon \mathbb{F}[Z]$ and assume the following:
$(\exists a, b, u): X \epsilon \mathcal{A}_{u}$
$\wedge q^{a}>u \wedge q^{b}>u \wedge \operatorname{gcd}(a, b)=1$
$\wedge X^{q^{a}} \equiv X\left(\bmod Z^{q^{a}}-Z\right)$
$\wedge X^{q^{b}} \equiv X\left(\bmod Z^{q^{b}}-Z\right)$
Remember from the lecture that if $X \epsilon \mathcal{A}_{u}$ than $\operatorname{deg}(X) \leq u$.
Prove that $X \in \mathbb{F}_{q}[Z]$
(Hint, remember last week's hand-in exercise).

