Homework set 14

Hilbert's tenth problem seminar, Fall 2013, due January 14th

By Niels Voorneveld

Exercise 1:

We are in the field $\mathbb{F}_q[Z]$. Remember that \mathcal{M} consists of triples (F, w, s) with s a q-th power, $w \leq s$ and $F = \sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \alpha_{ij} Z^{si+j}$ where d some natural number and all $a_{ij} \epsilon \mathbb{F}_q$. Remember that $\theta : \mathcal{M} \to \mathbb{F}_q[V, W]$ sends $(\sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \alpha_{ij} Z^{si+j}, w, s)$ to $\sum_{i=0}^{d-1} \sum_{j=0}^{w-1} \alpha_{ij} V^i W^j$.

Let $(F_1, w, s), (F_2, w, s) \in \mathcal{M}$. a) Prove that $\theta(F_1, w, s) + \theta(F_2, w, s) = \theta(F_1 + F_2, w, s)$

b) Prove that if $2w \leq s$, $\theta(F_1, w, s) \cdot \theta(F_2, w, s) = \theta(F_1F_2, 2w, s)$

Exercise 2:

a) Prove that the following function: $\delta : \mathbb{F}_q[Z] \times \mathbb{F}_q[Z] \to \mathbb{F}_q[Z], (A, B) \mapsto A^p Z + B^p$ is injective.

b) Knowing that any r.e. subset of $\mathbb{F}_q[Z]$ is diophantine in $\mathbb{F}_q[Z]$, prove that any r.e. subset of $\mathbb{F}_q[Z]^k$ for some k > 1 is diophantine in $\mathbb{F}_q[Z]$.

Exercise 3:

Take \mathbb{F} to be a recursive infinite algebraic extension of the field \mathbb{F}_p , with p some prime. Take q a power of p. Take $X \in \mathbb{F}[Z]$ and assume the following:

 $\begin{aligned} &(\exists a, b, u) : X \epsilon \mathcal{A}_u \\ &\wedge q^a > u \wedge q^b > u \wedge gcd(a, b) = 1 \\ &\wedge X^{q^a} \equiv X \pmod{Z^{q^a} - Z} \\ &\wedge X^{q^b} \equiv X \pmod{Z^{q^b} - Z} \end{aligned}$

Remember from the lecture that if $X \in \mathcal{A}_u$ than $deg(X) \leq u$.

Prove that $X \in \mathbb{F}_q[Z]$ (Hint, remember last week's hand-in exercise).